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I. COMPARATIVE STUDIES OF FREQUENCIES



Generalized Linear Models in Epidemiology

Many epidemiological investigations involve the collection and analysis of counted data,
such as frequencies of occurrence of events, numbers of individuals having particular
attributes and so on. Also of importance are studies of times of occurrence of events,
for example times of death, times to relapse or times of onset of a particular illness or
other condition.

Methods of analysing data of these kinds have advanced greatly since the development of
Generalized Linear Model theory, and have been facilitated by implementation of the
methodology on computers, initially through the GLIM package, and now on most of the
generally available major statistical analysis systems, such as SPSS-X, GENSTAT, SAS
and BMDP. The flexibility of model formulation and implementation (particularly on the
GLIM package) permits its use for the analysis of many different types of
epidemiological investigation. This text will consider three main categories of study, the
comparative study of frequencies, survival analysis and the analysis and modelling of
vital statistics.

It will be assumed that the reader is familiar with elementary methods of analysing

frequency data, such as the x2 test, the exact test for 2x2 contingency tables, McNemar's
test for paired data and with methods of multiple regression analysis. Some knowledge
of the main tools of epidemiological investigation and their purposes will be taken for
granted.

The intention of the present work is that the reader will be able to understand the logic of
applications of the General Linear Model in epidemiology, will gain some facility in
identifying appropriate methods of analysis for certain types of epidemiological
investigation and will be able to undertake some analyses themselves using the GLIM
computer package. Detailed consideration of statistical methodology is impossible given
the aims of the course and the short time available, but Breslow & Day (1980) cover
theoretical aspects of logistic-linear modelling applied to epidemiology in some depth and
McCullagh & Nelder (1983) is a key reference to generalized linear model theory.

11
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1. Comparative studies of frequencies

In this section I will consider three major types or categories of study. These are general
population studies, cohort studies and case-control studies. To introduce and motivate
consideration of the problems posed by each of these types it is necessary to discuss
some statistical quantities of particular relevance to epidemiological studies.

1.1 General population studies

One method of investigating the association between the occurrence of an illness and
exposure to possible risk factors is to select a random group of individuals from the
population for investigation. These subjects may be assessed for presence of the illness
and a number of risk factors at the time of investigation (a cross-sectional study), or may
be followed up for a number of years in a longitudinal or prospective study. The
presence or development of the illness in question in the individuals is recorded, as are
their attributes (potential risk factors). In a study of this type the outcome of interest, that
is the development of illness, may be considered as a binary variable, in the case in
which the total number of individuals with the illness is analysed, or as a time, when we
analyse the times to development of the illness. The methods of this section are
appropriate to the former case.

If we follow up a random sample from the appropriate population there is one basic
statistical parameter which we can estimate, and that is the incidence rate of the illness,
defined simply as the number of individuals developing the illness divided by the total
number in the study. An annual rate may be calculated by dividing this quantity by the
time period of the study in years . It is common also to express rates as rates per 100,000
or per million, which simply involves multiplication by the appropriate figure. Rates
should be corrected if subjects leave the study either through death, cessation of
cooperation or for any other reason. The denominator after such correction becomes
person years at risk, calculated appropriately. It is also useful in some situations to
estimate the prevalence rate, which is simply the proportion of individuals with the
illness in question at a single point in time.

In a cross-sectional study only the prevalence rate can be estimated. This poses certain
difficulties, since the relationship between prevalence and incidence is rather
complicated, involving such factors as duration of illness, time to death, and incidence of
cure. Nevertheless, prevalence may be analysed by the same methods as incidence, but
the interpretation of such analyses requires some caution.

The purpose of any epidemiological study is to examine the effect of possible risk factors
on disease. Considering the case of the longitudinal study further, we might classify
individuals in the study on the presence or absence of a particular attribute, a potential
risk factor. We may then estimate incidence rates for those with and without the risk
factor.

Table 1
Disease
Present Absent Total
Risk Present a b mq
Factor Absent C d my
Total nj n; n

Table 1 shows how the information from such a classification might be presented.
Entries in the table are frequencies corresponding to each category. It is important to




notice that the only quantity in the table which is fixed in advance is the total number of
individuals in the study, n. The population rate of illness may be estimated as ny/n, and
the rates in the risk factor present and absent groups are estimated as a/mj and c/m;
respectively. A test of significance of the difference between these may be carried out by

means of a )(_2 test, or equivalently a test for the difference between two proportions,
unless n is particularly small, in which case Fisher's exact test is appropriate. Confidence
intervals are easily constructed for the difference in proportions by standard methods,
either approximately from the normal distribution or using the more accurate quadratic
bounds, or for small n the hypergeometric distribution.

However the difference between the two rates is not the standard measure of association
between risk factor and disease. There are a number of reasons for this, and we will see
later that many common types of epidemiological study do not permit estimation of the
rate difference. The measures in most common use are the relative risk and odds
ratio.

1.2 Relative measures of disease incidence

The relative risk of disease associated with a particular risk factor is defined as the ratio
of the rate among those exposed to the risk factor to the rate among the unexposed. In
terms of table 1 above the relative risk is estimated by

A a/m
rr=ar7; (1.2.1)

This quantity measures how much more or less likely it is that disease occurs among
those exposed to the factor in question. It takes values between 0 and infinity, and
represents positive or negative association between illness and exposure according as rr
18 greater or less than one respectively.

The odds ratio is another common measure of association. The probability of an event e
can be re-expressed in terms of odds, O(e) as follows

O(e) =T}-)3 (1.2.2)

where p is the probability of the event in question. Thus, given rates of illness, which
may be considered as probabilities of illness we may calculate the odds for the exposed
and unexposed groups.

In terms of the quantities in table 1 the odds ratio Y may be estimated in a simple form as

A ad
=t (1.2.3)

The most attractive feature of the odds ratio as a measure of relative association is that it
1s estimable in many situations where the relative risk is not, as we shall see in the next
sections. Another useful aspect is that it approximates the relative risk quite well if the
incidence rate of the disease is small.

To see this consider an illness with rates re and ry among the exposed and unexposed
members of the population. The relative risk is then

3
Il
2|

(1.2.4)
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and the odds ratio is

re(1-ry)
=== (1.2.5
EN IS
If ry and re are small then clearly the quotient of the two bracketed terms is
approximately 1.

As an example of a prospective study consider the following data from a longitudinal
study of British civil servants (Marmot et al, 1981). The outcome of interest is death
during the ten years of the study, and the table further classifies the subjects on the basis
of their alcohol consumption. In the original article these data were presented in a more
detailed classification, which we shall consider later.

Table 2: Deaths in a 10-year study of English civil servants

Qutcome
Death Survival Total
Alcohol Zero 45 432 477
Consumption >0 68 877 945
Total 113 1309 1422

From table 2 we can easily calculate the 10-year death rates as 0.0943 among the non-
drinkers and 0.0720 among the drinkers. The estimate of relative risk is thus 1.31
considering the non-drinkers as the exposed category. The odds ratio estimate is 1.34

showing a reasonably close approximation to the relative risk. The usual xz test may be
applied to the table and yields a value of 2.17 on 1 degree of freedom, which does not
indicate a significant association between alcohol and mortality.

1.3 Cohort studies

One way of assessing the influence of a risk factor on mortality is to follow two groups
over time, a group exposed to the risk factor, and the other group not exposed. The
results of such a study can be tabulated and analysed by the methods of the previous
section, but there is one difference worth noting. The population proportions exposed to
the risk factor could be estimated from the type of general population study considered in
the last section, but in a comparative cohort study the numbers of individuals in the
exposed and unexposed groups, m; and my in the notation of table 1, are determined by
the experimenter.

However the rates of illness among the exposed and unexposed may be estimated from
cohort studies, and an estimate of relative risk can be obtained directly. This is not so for
the next type of study to be considered.
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1.4 Case-control studies

In a case-control study the researcher compares a group of individuals with the disease in
question (cases) with a group without the disease (controls). The numbers in these
groups are determined by the investigator, and therefore such studies do not permit direct
estimation of the rates of illness among the exposed or unexposed groups. To see this
consider the results of a case-control study in the form of table 1.

Since n; and n, are determined by the investigator different choices of these will lead to
different values of a/m; and ¢/my . It follows that these cannot be estimates of the true
rates among the exposed and unexposed, and hence the relative risk cannot be estimated
(Cornfield, 1951). Knowledge of the population rate of illness is required in order to
estimate the relative risk from a case-control study, and for many conditions such
information is not available. However the odds ratio is estimable from such a study, and
the estimate is just as in the previous case

@w:%% (1.4.1)

The rationale of the estimate is slightly different. Essentially the argument is that the
frequencies should be weighted to take account of the different sampling fractions for
cases and controls, which would imply multiplying the entries in the disease present
(case) column by a constant, X say, and the entries in the disease absent (control)
column by Y. The odds for the exposed group may be estimated as the ratio of cases to
controls in the exposed category, and similarly for the unexposed. This implies each set
of odds is weighted by the same constant, X/Y. On taking the ratio of the two odds the
constant cancels, giving the result. Another way of looking at this is to consider risk
factor prevalence among the case and controls. If we let pj and p2 be the proportions of
cases and controls respectively with the risk factor, then it follows that our estimates of
these would be a/n; and b/n, in the notation of table 1. Our estimates of the
complementary probabilities, q; and qp are similarly ¢/n; and d/nj, Thus the odds ratio
may be expressed in terms of risk factor prevalences as p1q2/p2q:-

The data in Table 3 are taken from a case-control study of cataract in Edinburgh (Clayton
et al, 1980). Notice that the population rate of cataract is certainly not 867/1190, these
numbers being simply the sizes of the case and control groups. However the odds ratio
for cataract due to smoking is estimable as

298%236
V=rige = 142
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Table 3: Smoking and cataract in Edinburgh

Cataract Population
Cases Controls Total
Smoker 298 87 385
Non-smoker 569 236 805
Total 867 323 1190

The usual %2 test gives a value of 5.95 on 1 degree of freedom indicating strong evidence
of association between smoking and cataract.

1.5 Matched case-control studies

Apart from the risk factor under investigation other variables such as age, sex and
unknown risk factors may affect the probability of developing illness, and may also be
associated with presence of the risk factor. Such variables are said to be confounding
and one way to take account of known confounding factors is by individually matching
each case to a control who shares the potentially confounding characteristics of the case.
The resulting study design, the matched case-control study is rather different from the
previous types considered, and data analysis is different also.

Table 4
Control
Risk Factor Present Absent Total
Case Present a b m;
Absent C d my
Total ni np n

The entries in table 4 are the frequencies of case-control pairs classified according to the
presence or absence of the risk factor for each member of the pair. Thus for example
there are b pairs in which the case member has the risk factor and the control does not.
The total in the table, n, is simply the total number of pairs, which is of course one half
the total number of individuals involved.

It is obvious that rates cannot be estimated directly from the data in table 4, and it might
appear that the odds ratio will also pose problems of estimation. However the odds ratio
is in fact estimated very easily as

== (1.5.1)

This may be shown by considering the probabilities p; and p; that a case and a control
are positive on risk factor exposure.

Defining (1.5.2)

q1 = 1-p;

and q2 = 1-p2 (1.5.3)
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it follows that the probability that a discordant pair has the case member of the pair being
exposed to the risk factor, and the control member not is given by

—Pid2__ 4
P192+q1P2 (1.5.4

Similarly the probability of a discordant pair being such that the case member does not
have the risk factor while the control member does is

—Paq1 (1.5.5)
P192+q1p2

Hence the estimate in equation (1.5.1) is the maximum likelihood estimate of the odds
ratio, as the observed proportions are maximum likelihood estimates of the appropriate
probabilities. Notice that pairs which are not discordant do not contribute to the
estimation procedure, nor to statistical testing. The test used in these circumstances is a
binomial test that the probability of each type of discordant pair is 0.5, given the total
number of discordant pairs, which for large values of b+c may be performed by means

of a 2 test on 1 degree of freedom. This procedure is often called McNemar's test.

1.6 The logistic-linear model

An alternative method of analysing studies of these types, and one which as we will see
lends itself to more complicated analyses of higher dimensional tables, is provided by
logistic regression, which is widely implemented in computer packages such as GLIM.
This methodology may be introduced simply by a brief description of its theoretical basis
and example analyses of the two sets of data considered in the last section.

The model considers a linear regression of log-odds of illness risk. For the exposed
population the appropriate quantity is log(re/(1-re)) , and for the unexposed log(ry/(1-ry))
in the notation of section 1.2. Notice that the difference of these two logits is simply

logy. Now consider a regression equation in which the dependent variable, y, is the logit
of the rate of illness, and the independent variable, x , is exposure at levels 0

(corresponding to no exposure) and 1 (corresponding to exposure). The regression
equation may be written

Ely] = a+px (1.6.1)

so for the unexposed group the model gives

log(ry/(1-1y)) = o (1.6.2)

and for the exposed group
log(re/(1-1e)) = o+f (1.6.3)

Hence the parameter B in the model corresponds to the logarithm of the odds ratio due to

exposure. Estimation of {3 and its standard error will permit point and interval estimation
of the odds ratio, in addition to testing the significance of the effect of exposure.

The model may be fitted easily by maximum likelihood using the GLIM package. GLIM
requires the probability distribution of the observations to be specified, and uses either an
appropriate default LINK function, or one supplied by the user. The LINK function is
that transformation of the expected value of the observations which is predicted by a
linear function of the explanatory variates. In the case of binomial observations the
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logistic function is an appropriate LINK function and is automatically set by GLIM
when the error structure is declared.

There are several important quantities calculated by the program, which are of value in
various ways. GLIM will fit a null model, that is a model with no explanatory variables,
which in the present context implies fitting the same rate to the exposed and unexposed
groups. The deviance statistic for this model produced by the program (identified as
residual deviance in the output) is the negative of twice the log-likelihood value at its
maximum, that is, evaluated using the best single estimate of the rate of illness for both
groups. Although the distribution of this statistic is not defined in the general case, in the
particular instance of two groups and a binary explanatory variable it turns out to be the

y2 distribution on 1 degree of freedom (as for the 2x2 table). This is because differences
in deviance between models are interpretable as ¥2 statistics, and the full model for two

groups involves only one parameter, {3, the corresponding deviance having fitted this

parameter being zero. The deviance statistic is not identical to the usual Pearson X2
statistic, although the values will be very close, and for large n virtually equal.

1.7 GLIM example 1

Several examples of the use of GLIM will occur in this course, and while the directives
used in these analyses will be explained, it is not the intention to give a complete
overview of the GLIM package. Interested readers are referred to the GLIM introductory
guide (Swan, 1985) and the GLIM manual (Payne, 1985) for a full description of the
package, and to Healy (1988) for a general practical introduction.

For the present example the data in table 2 has been used, with exposure level 1
corresponding to the non-drinking group. In order to set up a GLIM analysis it is
necessary to define the number of data points which determines the length of the arrays
or vectors which will be named to contain the data. This is achieved through the $UNIts
directive, and for the 2x2 contingency table the appropriate directive is

SUNITS 2

Notice that although there are 4 cells in the table, for logistic regression we actually only
have 2 data points. This is because there are only two probabilities involved, as we
condition on the marginal totals for the exposure categories. Note, too, that directive
names are distinguished from other text by being preceded by a $ sign and that only the
first three characters of a directive are required by the program, although for
completeness they are often given in full in these examples. GLIM control statements
may be entered in upper or lower case, but in order to distinguish them from other text
they will be set in upper case throughout.

The next step is to define and then enter the data using the $DATa and $REAJ directives
as follows

SDATA EXP CASES N
SREAD

1 45 477

2 68 945

The names of the data vectors are at choice, and in this example alcohol consumption has
been coded as 1 for non-drinkers, 2 for drinkers, and named EXP. In GLIM
terminology this variable is a FACTOR at two levels, thatis a categorical variable with
two categories. There is another possible type of explanatory variable recognised by
GLIM, a VARIATE, which represents values of a continuous variable or an ordered
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categorical variable. The difference between these two types of explanatory variable
arises when they are fitted in a model. GLIM fits constants to the values corresponding
to levels of a FACTOR other than the first, while for a VARIATE a constant times the
value of the variate is fitted, as in a linear regression model. A factor with only two levels
does not require to be defined as such, since there is only one degree of freedom for the
comparison of levels in any case. In general, factors may have several levels, m say, and
these should be coded as the integers 1 to m inclusive.

The response, which I have named CASES, corresponds to the number of deaths in the
appropriate exposure categories, and N is the total number of individuals in each
exposure category. Only the first four characters of a name are recognised by the
program. The $REAd directive precedes the data, and the program then reads the values
to be placed in EXP(1), CASES(1), N(1) followed by those for EXP(2), CASES(2) and
N(2).

Now the response variable and the type of regression model to be fitted are defined.

SYVAR CASES
SERROR B N

These two directives inform the program that values of the response variable are held in
the array CASES, and that the model to be fitted has a binomial error structure (B), with
denominators corresponding to values of the variable in array N. The program
automatically selects the appropriate default link function after the error structure has
been defined, and

recognises that it is to fit a logistic linear regression to the proportions CASES/N. The
null fit, that is fitting a common proportion to the two exposure categories is produced by
the directive

SFIT

In order to obtain the output from the fit it is necessary to issue a new directive, which
may in practice be null, as in

SFIT $
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This will produce the following output from the program:

scaled deviance = 2.1176 at cycle 3
d.f. =1

In order to examine the estimate of the combined rate, the directive $DISplay E is used.
This directive takes a number of possible parameters, some of which will be described
later. The parameter E requests estimates and standard errors, and produces

estimate s.e. parameter
1 -2.450 0.09805 1

The estimate of the common probability, ?may be obtained by back-transforming from
the logit as

where a is the estimate of o identified as corresponding to the parameter "1" in the
output.

In this case the value of the deviance indicates that there is no significant difference in

risk between the two exposure categories, as one would expect. It is for example only
that we now fit a term in the model to take account of exposure to the risk factor.

SFIT EXP $

scaled deviance = 0.00000000 at cycle 4
d.f. = 0

The output shows a deviance of zero, but it is of interest to obtain the value of the
parameter corresponding to exposure.

SDISPLAY E $

estimate s.e. parameter
1 -1.967 0.3376 1
2 -0.2952 0.2010 EXP

By taking the exponential we obtain an estimate of the odds ratio due to drinking

W = 0.744

1.8 Interval estimation

We may construct a confidence interval for the odds ratio by multiplying the standard
error of the parameter estimate by the appropriate percentage point of the normal
distribution and taking this distance either side of the estimate as the lower and upper
limits. Back-transforming as above yields corresponding upper and lower limits for the
odds ratio at the required level of confidence.

(100-0t)% confidence limits for logy are then given by
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logy = zgp. se( logy) (1.8.1)
where zg; 1s the (a/2)% point of N(0,1).

Several different methods are available for constructing confidence limits appropriate to
the comparison of two proportions, but since the present work is concerned with
analysis of epidemiological studies by generalized linear modelling attention will be
restricted to the above method, and to another simple method due to Miettinen (1976).

Miettinen's method involves only the estimate of logys and the value of the %2 statistic
appropriate to the test of significance of exposure, ¥¢2. Arguing that the quantities

2
(logu:) and %02

var(y)

provide equivalent information for the test of significance he suggests that var(\{y) be
estimated by

A
2
{ogw)” (1.8.2)
Xo?
which gives as the interval for logy
log\y
logh + zgp. —2X. (1.8.3)
Xo
Back transformation of these limits gives
¥ (2% (1.8.4)

These test based limits are particularly easy to apply in the 2x2 table, and do not involve
any difficult calculation. Even in more complex analyses where variances might be
difficult to estimate test-based limits are readily available if a suitable test has been
performed.

Both the test based and standard error based limits are likely to be too narrow (Gart &
Thomas, 1972; Gart, 1979), the former particularly so when calculated from small

samples, and the latter when s is far from unity. Miettinen suggests using one of the
test-based limits (upper or lower) if both the test based and standard error based limits

are closer to the null value (y=1) than to the point estimate \?I In general however

standard error based limits are more commonly used, and involve little extra computation
given that a GLIM analysis is available.

Difficulties are posed by the presence of zero values in the cells of the table. In particular
1f no cases are observed both among those exposed to the risk factor and those
unexposed it might be concluded that no information is provided by the study. If the total
numbers in each exposure category are not equal then this conclusion is incorrect. For
example O out of 10 is consistent with larger values of the unknown underlying
probability than 0 out of 1000. Classical binomial analysis will provide interval estimates
of the rate difference if desired. Needless to say the above data will not lead to a
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significant difference between the rates, but the idea that analysis of a study ends with
calculation of a test statistic and a p-value is now recognised as inappropriate.

1.9 Extension to case-control studies

The data of GLIM example 1 were obtained from a longitudinal study of a sample from a
specified population of individuals, and thus calculation of rates was possible. There
should be no difficulty then in appreciating the validity of applying the logistic-linear
model to the data. With the case-control study matters are not so clear-cut. The difficulty
here is, as before, that the proportion of cases in a particular exposure category is not an
estimate of the rate in that category. However the argument of section 1.4 can be
extended to cover the case-control situation.

In the simple case of one exposure variable we may express the conditional probability of
illness given exposure as

P(e/c)P(c)

P(c/e) = Pe)

(1.9.1)

where ¢ denotes the event "illness" and e exposure. This relation implies that the
probabilities which are estimable from the case-control study, namely the conditional
probabilities of exposure, given illness (for the cases), and absence of illness (for the
controls) are related to the probabilities of illness given exposure or absence of exposure
by multiplication by the appropriate constants. It is easy to see that these constants cancel
in the odds-ratio as before. In order for this argument to be valid it is essential that the
probability that an individual, whether a case or control, is selected is independent of
exposure status, and that the selection process is independent for different individuals.

Although we have not yet considered the multivariate case in detail it is convenient to
express the argument in terms of a vector of exposure variables, x. From a theoretical
point of view a difficulty is posed by the undeniable fact that in a case-control study it is
the exposure status of individuals, x which is a random variable, not their case status,
which is controlled by the selection procedure. Denoting case or control status by y, and
exposure status by X we can write

P(x/y)=P—(y-l/)X—(§,I;LQ; y=0,1 (1.9.2)

where P(y) corresponds to the probability of case (1) or non-case (0) status. The case-
control study provides information about P(x/y), which is P(y/x), multiplied for cases
by the overall probability of exposure divided by the probability of illness, and for
controls by the probability of exposure divided by the probability of not having the
illness. The logistic-linear model for P(y/x) appears therefore to require modification for
application to case-control studies. However if the marginal distribution of exposure
does not contain information about the parameters of the model for P(y/x) then it is
possible to estimate P(x) and the coefficients of the model jointly. This approach leads to
the same parameter estimates as applying the logistic linear model directly to the data.

An appropriate alternative is to use conditional likelihood methods to eliminate the term in
P(x). This approach is based upon application of the logistic linear model conditional on
the x; values observed in the case and control groups in terms of their randomisation
distribution. This will become clearer in the section on matched studies. The method
leads to computational difficulties for large sample sizes, and asymptotically the resulting
estimates will be close to those obtained by the joint likelihood method. A fuller
theoretical treatment of these issues is provided by Farewell (1979).

GLIM example 2
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The data of table 3 may therefore be analysed by exactly the same method as for table 2.
It should be obvious from symmetry of the odds ratio implied in section 1.4 that the
same results will be obtained whether one analyses the proportion of cases in each
exposure category, or the proportions exposed in each status category, but for
completeness both analyses will be given.

SUNITS 2

SDATA STATUS EXP N
SREAD

2 298 767

1 87 323

SYVAR EXP

SERROR B N

SFIT $

SFIT STATUSS
SDISPLAY ES

produces the following output

scaled deviance = 6.0723 at cycle 3

d.f. =1
scaled deviance = 0.0000000 at cycle 3
d.f. =0
estimate S.e. parameter
1 -1.349 0.2608 1
2 0.3511 0.1444 STAT

The analysis of the proportion of cases in each exposure category is performed similarly.

SUNITS 2

SDATA EXP CASES N
SREAD

2 298 385

1 569 805

SYVAR CASES
SERROR B N

SFIT S

SFIT EXPS
SDISPLAY ES

scaled deviance = 6.0723 at cycle 3
d.f. =1

scaled deviance = 0.000000 at cycle 4
d.f.

I
o

estimate s.e. parameter
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1 0.5289 0.1971 1
2 0.3511 0.1444 EXP

Note the agreement between the two analyses, producing the same deviance statistics and
estimated odds ratio.




II. MULTIVARIATE STUDIES




2. Multivariate studies.

There is little difficulty in analysing an epidemiological study involving only one
dichotomous exposure variable and a similarly binary response. In practice studies
usually include independent variables of various types, including categorical, ordered
categorical and continuous variables. Some studies may also involve multiple response
categories, but for simplicity we shall continue to consider dichotomous dependent
variables only.

One reason for being interested in variables other than the exposure which is at the centre
of an epidemiological enquiry is the possibility that other variables and their association
with both exposure and the outcome variable may be influencing the relationship between
exposure and illness.

2.1 Confounding

Consider an epidemiological investigation to assess the relative risk rr of developing an
illness due to exposure to E. An extraneous variable X could obscure or exaggerate the
relation between illness and exposure if it is associated with E and also with the
probability of developing the illness. There is an interesting result concerning the relative
risk of illness due to X if X is entirely responsible for an observed association between E
and illness. The relative risk due to exposure to X must be at least as strong as that
apparently due to exposure to E, and in addition X must be 1T times more common
among those exposed to E as in those unexposed. Taken together these two conditions
are often considered to be good reasons for using relative risk as the measure of choice
for relative disease incidence, large values of relative risk being unlikely to be due
entirely to an unidentified confounding variable.

In the case of a single dichotomous possibly confounding variable we may represent the
results of the study in a 23 table, and a suitable example of this is provided by the
smoking and cataract analysis considered earlier, where we now tabulate by sex in
addition to smoking.
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Table 5: Smoking and cataract in Edinburgh by sex

MALES Cataract Population
Cases Controls Totals
Smoker 184 33 217
Non-smoker 135 64 199
Total 319 97 416
FEMALES Cataract Population
Cases Controls
Smoker 114 54 168
Non-smoker 434 172 606
Total 548 226 774

There are two questions of interest relating to sex as a confounding variable here. Firstly,
does controlling for sex explain the association between cataract and smoking, that is,
does the association observed in our earlier analysis arise simply because of differential
rates of cataract and smoking between the sexes? If the answer to this question is in the
negative then a further question is whether the association between smoking and cataract
is the same for the two sexes.

It is not possible in this particular case to assess whether sex is a risk factor for cataract,
inasmuch as defects in sampling the control population may have led to the difference in
proportions of sexes between the case and control groups.

Again, although these data are from an actual study the analysis is presented here as an
example of the methodology, not as a definitive solution to the problem of association
between smoking and cataract. In fact this example will be considered in more detail in
the next section.

We first specify what the above questions mean in terms of logistic-linear modelling.
Simple inspection of table 5 shows that there are differing proportions of males and
females between cases and controls. 37% of the cataract patients are males, whereas only
30% of the controls are. It should perhaps be mentioned that the cases for this study
were persons who had cataractous lenses removed by surgery in Edinburgh, and tended
to be rather elderly, and the controls were obtained from persons of similar age, hence
the relatively low proportion of males in the groups. Sex may be associated with
smoking habits, and also with the development of cataract, and therefore could be a
confounding variable.

Examining the odds ratios in each of the two sexes from table 5 we see that for men \1\1 is
estimated as 2.64, and for women 0.84. This would suggest that although sex may not
be a confounder, it might be an effect modifier. We may nevertheless calculate a single

estimate \ for both sexes combined. This supposes that the true odds ratios in the two
sexes are the same, and differ in the data only because of sampling variation.

For a series of 2x2 contingency tables, each classifying the cases and controls as in table
1, and each corresponding to a single level of a confounding variable with h levels, the
Mantel-Haenszel estimate of the odds ratio is defined by
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h
.zlaidi/Ni
A =
Wmh = ——— (2.1.1)

2 bici/Nj
i=1

In this formula aj, bj, ¢j and d; refer to the frequencies in the appropriate cells of the table
corresponding to level i of the confounding variable. This estimator is not affected by the
presence of zero values in some cells, and is consistent as the number of tables increases,
even with small numbers in each table. Unfortunately this is not the case with estimators
derived from logistic linear models for large numbers of sparse tables, but provided this
drawback is recognised the logistic linear model is more convenient for many purposes.

So, for the data in table 5, calculation gives

Wimh = 1.31 2.1.2)
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GLIM example 3

One suitable (and simple) formulation of a logistic model for these data is to take as
response the numbers of cases in each exposure category by sex, with denominator
given by the total number of cases in the sex by exposure category, and include terms in
the model representing sex and exposure. As there are 4 proportions to be modelled and
two parameters to be fitted, namely sex and smoking, there will be one degree of
freedom after fitting, and the residual deviance associated with this is a suitable test
statistic for effect modification.

The GLIM control language to perform the analysis is

SUNITS 4

SDATA EXP SEX CASES N
SREAD

2 1 184 217

11 135 199

2 2 114 168

1 2 434 606

SFAC EXP 2 SEX 2
SYVAR CASES
SERROR B N

SFIT EXP+SEX$
SDISPLAY ES$

The output from this analysis shows a residual deviance of 14.20 on 1 df, which is
evidence of lack of fit of the model, strongly suggesting effect modification by sex.
Residuals from the fitted model may be inspected by an additional option in the
$DISPLAY directive as

SDISPLAY E R$

producing the following output

estimate s.e. parameter
1 0.9870 0.3634 1
2 0.2825 0.1513 EXP
3 -0.2211 0.1471 SEX

scale parameter taken as 1.000

unit observed out of fitted residual
1 184 217 171.6 2.062
2 135 199 147.4 -1.998
3 114 168 126.4 -2.207
4 434 606 421.6 1.091

The effect estimates above (0.2825 for exposure and -0.2211 for sex) are of little
interest, since sex appears to modify the effect of smoking, but it is worth remarking that
transforming the smoking effect from log odds ratio to odds ratio gives an estimate

W=1.32
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very close to the Mantel-Haenszel estimate.

The residuals from the model serve as another indication that sex is an effect modifier.
The observed number of smoking cases among the males is considerably greater than the
fitted number, the converse being true for females. The residuals themselves are
standardised by the estimated binomial standard deviation of the observations in each
category, as

observed;-fitted;

. 4 Itted;
\/ fitted; {1- Total; }

(2.1.3)

where each of the quantities in (2.1.3) refers to the individual data point corresponding to
category i.

The use of residuals in GLIM is much the same as in standard regression analysis.
Examination of residuals may suggest ways to improve model adequacy, identify outliers
and so on. Just as in regression analysis there are several different types of residuals
which may be calculated using specially written GLIM macros. Many standard
regression diagnostic procedures may be modified to be applied to the logistic-linear
model (Williams, 1987).

Notice that the $FIT directive takes as arguments the names of the independent variables
to be entered in the model. Subsequent fits may be specified by updating the directive,
for example, if we now wished to fit exposure alone this could be done by issuing the
directive

SFIT -SEX$

while to fit the interaction of sex and exposure we could update the (initial) model
formula by

SFIT +EXP.SEXS

2.2 Confounding variables at several levels

Rather than immediately estimating the differential effect of smoking as a risk factor
between the sexes it may be more useful to expand the data to take account of another
factor. The age structure differed between cases and controls, and although it seems
likely that age is a risk factor for the development of cataract, again it is being treated here
as a potential confounder, because difficulties in control sampling may have led to the
different distributions of cases and controls by age. To distinguish factors of this type
from the exposure factors of primary interest they will be referred to as stratifyin g
variables or stratifiers.

Table 6: Smoking and cataract by age and sex

Males Females
Age Smoking  Cases Controls  Cases Controls
50-59 No 11 6 17 23
50-59 Yes 42 1 18 8
60-69 No 38 26 72 59
60-69 Yes 59 11 41 23

70-79 No 60 28 191 70
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70-79 Yes 60 20 47 22
80-89 No 26 4 154 20
80-89 Yes 23 1 8 1

For convenience and to illustrate another GLIM feature the table summarising smoking,
age and sex is presented as numbers of case and controls classified by smoking and the
stratifiers rather than as a series of 2x2 contingency tables with marginal totals. It will be
noticed that, as mentioned previously, the cases and controls are all rather elderly.
Although some cells contain very low numbers there are no zeroes in the table, so log
odds ratios for all the subtables by stratifiers are estimable, and may therefore be
combined without difficulty, should it prove reasonable to do so.

Before performing the GLIM analysis it is necessary to give some guidance regarding
model selection. Clearly one can include terms involving age (3 degrees of freedom), sex
(1 df), smoking (1df), and the interactions of these, age by sex (3 df), age by smoking
(3df) sex by smoking (1df) and age by sex by smoking (3 df). Of these terms the ones of
direct interest are those which involve smoking, and the interaction age by sex is of no
direct relevance to the investigation. However, since what we are trying to do is to take
account of possible confounding due to age and sex it seems reasonable to include all
terms in the stratifying variables, including their interaction in any model.

Now, there are 16 observed proportions, and thus 15 df in the data. The degrees of
freedom corresponding to the terms listed above also add to 15, so fitting all terms leads
to a residual deviance value of zero. As in the last example then we may fit all terms
except the highest order interaction, and see if this leads to a satisfactory model, as

judged by comparing the residual deviance with %2 on 3 df. If the value of the residual
deviance is larger than the selected percentage point, then this is evidence of a rather
complicated system of effect modification of smoking, in such a way that the odds ratio
due to smoking differs between age by sex classes in a way that cannot be expressed as a
product of separate marginal estimates for age and sex. If this should be the case then
modelling has not simplified the interpretation of the data- not necessarily through any
defect of the model, but because the data indicate that the underlying population odds-
ratios in different age-sex groups do not have a structure that permits simple description.

On the other hand, if the highest order interaction is not required, terms involving the
exposure factor may be deleted, one at a time, starting with the highest order terms, and

the resulting increases in deviance assessed against the 2 distribution with the
appropriate degrees of freedom. This method of model selection is a constrained form
of backward deletion, a stepwise method described in some detail for the linear
regression case in Daniel & Wood (1971). It is constrained in that we do not assess the
effect of deleting terms involving stratifiers only. The process of deleting terms from the
model continues until a term is deleted which increases the residual deviance too greatly.
If this term is an interaction of the exposure factor with a stratifier then it is of interest to
assess all the other interactions of exposure with stratifiers of the same order. In some
cases with exposure factors which are ordered categories it will also be useful to test
whether a single regression coefficient may be applied to the factor rather than fitting
separate constants to each level. This will become clearer as we go through the
examples in the course.

GLIM example 4

The GLIM control language required to perform the analysis of the data in table 6 along
the lines outlined above is as follows.

SUNITS16




SDATA AGE EXP SEX CASES CONTROLS

SREAD
11111 6
112 17 23
1 21 42 1
122 18 8
21 1 38 26
212 72 59
2 2159 11
2 2 2 41 23
31160 28
312 191 70
32160 20
32 2 47 22
41 1 26 4
4 1 2 154 20
4 21231
4 2281

The above lines define and read in the data. It remains to declare the factor structure,
compute the denominator for the cases, and set the error structure and response variate.

SFACTOR AGE 4 SEX 2 EXP 2

It is not strictly necessary to declare EXP and SEX as factors at two levels as explained
earlier, but AGE must be specified as having four levels.

SCALCULATE N=CASES+CONTROLS

This illustrates the use of the $CALculate directive, which as its name implies is used to
perform calculations, transformations and logical comparisons on the data. Notice that
the vector N which will hold the totals of CASES and CONTROLS for each cell of the
classification has not been previously defined. The directive creates a vector called N
without requiring any further specification.

SYVAR CASES
SERROR B N

In the specification of the logistic-linear model interactions are written as terms in the

products of explanatory factors, and in a GLIM fit a single interaction of two factors
may be represented as for example

AGE.SEX

An interaction of three factors may be written as

AGE.SEX.EXP

and using this notation the model to be fitted to the present set of data can be expressed
as
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AGE+SEX+EXP+AGE . SEX+AGE . EXP+SEX. EXP

An alternative notation which is shorter but means the same thing is provided in GLIM
using * instead of . between factor names. It is quite easy to understand, in that

AGE*SEX = AGE+SEX+AGE.SEX

Since in the present example we wish to include the three terms on the right hand side in
all models to be fitted we may use this notation in the $FIT directive. Brackets may also
be used to economise in the length of specification of a model. These follow the normal
rules of brackets of multiplication. Thus

EXP. (AGE+SEX) =EXP .AGE+EXP .SEX

The appropriate directive to fit all terms except the highest order interaction to the
present data is therefore

SFIT AGE*SEX+EXP+EXP. (AGE+SEX) $

Of course, the directive may also be used with the individual terms listed rather than the
short cut notation, and the result will be the same.

The residual deviance is 1.42 on 3 df, which indicates that the three-factor interaction
EXP.SEX.AGE is not required in the model. We now examine each of the two-factor
interactions involving exposure in turn, making use of the model formula updating
facility in GLIM by which terms may be added to or deleted from the current model
without the necessity of giving a full model specification.

SFIT -EXP.SEXS

scaled deviance = 8.6 (change = +7.18)
df = 4 (change = +1)

The increase in deviance resulting from the exclusion of the exposure by sex interaction

is much greater than the 1% point of %2 on 1 df, and we conclude that the exposure by
sex interaction must be retained in the model.

To assess the importance of the exposure by age interaction we examine the effect of

deleting this from the initial model. One way to do this quickly is to add back the term
EXP.SEX and remove EXP.AGE

SFIT +EXP.SEX-EXP.AGES

The resulting deviance and df are to be compared with the original values 1.42 and 3,
not the last values, so the change values given in brackets in the output are ignored.

scaled deviance = 14.79
daf = 6

Thus, deleting the exposure by age interaction increases the deviance by 13.37 on 3
degrees of freedom, and we conclude that this interaction is also required in the model.




The effect estimates and standard errors are as follows.

estimate S.e. parameter
0.8479 0.4657 1
-0.4514 0.5098 AGE (2)
-0.1536 0.4990 AGE (3)
1.067 0.6897 AGE (4)
-1.243 0.5149 SEX (2)
2.225 0.5236 EXP (2)
1.038 0.5614 AGE (2) .SEX (2)
1.578 0.5475 AGE (3) .SEX (2)
1.361 0.7501 AGE (4) .SEX (2)
-0.9699 0.5319 AGE (2) .EXP (2)
-1.731 0.5207 AGE (3) .EXP (2)
-1.149 0.9304 AGE (4) .EXP (2)
-0.8505 0.3187 SEX (2) .EXP (2)

These require some explanation, and care in interpretation. First of all it should be
recalled that age and sex are considered here as confounders and effect modifiers, not as
risk factors in their own right. The apparent association between these factors and
cataract may be due to deficiencies in control sampling and thus we do not attempt to
interpret estimates for age, sex or age by sex.

On the other hand we must take account of all estimates involving the exposure variable.
The estimate of the log-odds ratio for exposure is 2.225, which is the estimate of the
effect of exposure at the lowest levels of all other factors in the model. In the present
case therefore it corresponds to an estimated log odds-ratio for exposure among men
aged 50-59. The estimated log odds-ratios for men in the other age groups are obtained
by adding the appropriate estimates of components of the exposure by age interaction.
Thus the estimated log odds-ratio for men aged 70-79 due to exposure is 2.225-1.731
which equals 0.494. Figure 1 shows the estimated odds ratios from the model and the
odds ratios calculated from the appropriate subtables for each age group and sex. Notice
that the estimated log odds-ratios for women in the various age groups are obtained by
adding the sex(2).exp(2) estimate to the corresponding values for males.

The estimates from the model and the calculated odds ratios from the subtables are in
quite close agreement except for the youngest males. The reason why this disagreement
does not lead to significance of the three factor interaction is that there are only 7 control
subjects for this category. It is interesting that for women
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Figure 1: Cataract and smoking by age and sex
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aged 70-80 exposure to smoking appears to reduce the risk of cataract. However the
standard errors in the output show that the actual value of log odds ratio due to exposure
for this group is not significantly different from zero. It may be concluded that men are
placed at more risk by smoking than are women, and that the risk related to smoking
varies by age in a similar fashion for each sex.

2.3 Independent variables- VARIATEs of FACTORs?

As mentioned in section 1.7 independent variables in the regression model may declared
as either FACTORSs or VARIATE:s. For a factor x at m levels, x1, X2,....,Xm GLIM fits
m-1 constants to the levels 2,3,... m of the factor. In the case of a variate a single

regression coefficient B is fitted. The models for these are as follows, with y
representing the logit of the appropriate proportion:

E[y/xk] = a+Bk ; k=2,3,..m (2.3.1)

E[y/x] = o+Bx (2.3.2)

These are simply extended to vectors of dependent variables, which may include both
factors and variates. However in modelling response it is not possible to use the
interaction symbols to join two variates. To fit an interaction of two variates, xj and xj
we must define a new variate, using the $CALculate directive, having values given by
the products xix;. Terms involving the interaction of a single variate with one or more
factors may be specified in the usual notation. The test of this type of interaction in a
logistic-linear model is analogous to a test for parallelism of regressions in standard
regression analysis. Polynomial terms may be fitted by creating new variates having the
values of the appropriate powers of the variates concerned.

As anexample of these approaches consider the data in table 7 which are taken from a
study of liver cirrhosis and alcohol consumption in Ille et Vilaine (Pequignot et al,
1978).
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Table 7: Ascitic cirrhoses and controls by daily alcohol consumption

Daily consumption Ascitic Controls
(in gms 100% alc) Cirrhoses

0-20 3 185

21-40 10 212

41-60 15 165

61-80 24 108

81-100 30 58

101-120 23 31

121-140 25 13

141-160 24 5

161+ 30 1

Table 7 represents the distributions by alcohol consumption category of 184 male
sufferers from alcoholic cirrhosis and 778 male controls obtained from the general
population. The 9 consumption categories may be considered as 9 levels of a single
factor, or we may associate with each category a value of consumption. For example,
the first category may be taken to correspond to 10 gms/day, the second 30 gms/day,
and so on. There is clearly some arbitrariness in this procedure, which is particularly
evident when considering the last category, which has no upper limit. Nevertheless, it is
a useful exercise to investigate the feasibility of replacing the 8 degrees of freedom
factor with a single degree of freedom variate. The success or failure of the simpler
(variate) formulation may be assessed by comparison of the deviance difference

between the models with the appropriate percentage point of %2 on 7df. However in the
present case fitting alcohol consumption as a factor at 9 levels will result in a residual
deviance of zero, with zero degrees of freedom, and we therefore appropriate to
perform a single analysis with a suitably defined variate.

GLIM example 5

The GLIM control language required is

SUNITS 9

$SDATA ALC CASES CONTS
SREAD

1 3 185

10 212

15 165

24 108

30 58

23 31

25 13

24 5

30 1

SCAL TOT=CASES+CONTS
SYVAR CASES

SERROR B TOT

SCAL VALC=20*ALC-10

O O ~JO U W N
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This assigns values 10,30,50,....,170 to the elements of a new vector VALC according
to the corresponding value of ALC. The null fit may be obtained by

SFIT S

scaled deviance = 327.34
df = 8

The value of the deviance shows a very significant relationship between alcohol
consumption and cirrhosis, but we now attempt to explain this in terms of VALC, that
is consumption level considered as a variate.

SFIT VALCS

scaled deviance = 3.4372
df = 7

Thus almost all the variation between the alcohol consumption categories can be
explained by logistic-linear regression on VALC.
The effect estimates are obtained as

estimate s.e. parameter
-4 .327 0.2525 1
0.03934 0.002796 VALC

Different, but sensible values chosen to represent the maximal consumption category
produce roughly similar values of the deviance and the estimated regression coefficient.
The interpretation of the coefficient of VALC in this analysis is that each gram of
alcohol consumed increases the estimated log odds ratio of cirrhosis by 0.03934. To put
this in a more concrete way, a person drinking an extra 20 grams of absolute alcohol per
day multiplies his odds ratio of cirrhosis by approximately 2.2, and for low values of
initial risk this is approximately equivalent to risk multiplication by the same factor.

A further example may be considered using a more detailed tabulation of the data in
table 2, presented in table 8.

Table 8: 10-year deaths of English civil servants by age and alcohol

consumption
Alcohol (gm/day)

Age (y1) 0 0.1-9 9.1-34 >34
40-49 6/206 9/174 7/144 3/60
50-59 26/206 8/172 13/177 12/105
60-64 13/65 7/44 4/46 5/23

The entries in the table represent the numbers of deaths in each particular age and
consumption category, and the total numbers of men in the category found in the
survey. Once again the assignment of values to each consumption category is somewhat
arbitrary. In the reported analysis (Marmot et al, 1981) the values used are not given
explicitly, but from a figure in the text it appears that equal intervals between the values
for the four categories were employed. This does not make a great deal of sense. The
values used in the present analysis were 0, 5, 23 and 45.



GLIM example 6

To analyse the above data along the lines indicated, declare 12 units, factors AGE (at 3
levels) and ALC (at 4). Read in the data, declare a binomial error structure and fit the
model excluding the two-factor interaction.

SFIT AGE+ALCS

scaled deviance = 8.70
df = 6

This indicates that the AGE.ALC interaction is not required in the model. We may fit the
models AGE alone and ALC alone, and doing so will indicate that ALC can in fact be

excluded, x2 = 5.2 on 3 df.

SFIT AGES

scaled deviance = 13.96
df = 9

Rather than leave matters there, we may consider fitting alcohol consumption as a
variate on one degree of freedom, and fitting polynomial terms in consumption.
Following the line of the original authors consumption categories were identified with
variate values but in the present analysis these were assigned to correspond more
closely to the actual categories.

SCAL VALC=0

$CAL VALC=%IF (ALC==2,5,VALC)
SCAL VALC=%IF (ALC==3,23,VALC)
SCAL VALC=%IF (ALC==4,50,VALC)

Notice the rather unusual structure of these assignments. The syntax of conditional
assignment in GLIM involves a variable to be assigned, an operator, and 3 arguments in
brackets. The first argument is usually a logical variable, or expression, taking values 1
(true) and O (false). The second argument is the value taken by the assigned variable
when the first argument is 1, the third being the assignment when the first parameter is
0. Thus the last statement above means

When ALC has the value 4, assign the value 50 to VALC, otherwise do not change the
value of VALC.

We may now proceed to fit AGE+VALC, with the following result

scaled deviance = 13.84
df = 8

and again it is clear that VALC is not required in the model. However we may fit a
quadratic term in VALC, V2

SCAL V2=VALC*VALC
SFIT AGE+VALC4HV2
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scaled deviance = 9.981
af = 7

Now we have a reduction in deviance due to linear and quadratic terms in VALC of
approximately 4 on 2 df. Again, we should conclude that these terms are not required in
the model. But things are not quite so simple. Addition of the quadratic term leads to a

deviance reduction of 3.85 on 1 df which is greater than the 5% point of x% indicating

that the quadratic term should be included in the model. Examining the data, and the
estimates from the GLIM analysis shows that the odds ratios for the highest category
compared to the lowest is approximately 1, and the two intermediate categories have
odds ratios of less than 1, in fact about 0.65 relative to the zero category. So, if the
quadratic term is included the effect is to suggest only that intermediate consumption is
beneficial. The danger of this result is that extrapolation of the regression model to
values of consumption higher than that assumed to correspond to the highest observed
category could lead to the unjustified assertion of very high odds ratios for heavy
consumers of alcohol.

2.4 Analysis of ungrouped data

The previous examples involving variates proceeded on the basis of grouped data, and
the assignment of a group mid-point value of the variate to each group. In practice it is
often the case that the individual values of the variate are available for each unit, and in
these circumstances it makes sense to use them. The data may then be entered into
GLIM without grouping, individual by individual. The response variable will be case
status of the individual, taking values O (control) or 1(case), and the appropriate error
structure is binomial, with a denominator of 1. If there are a large number of factors in
the data it may sometimes be the case that grouping on these may lead to many small
strata, and information may not be available in the data concerning particular effects or
interactions. There may also be many parameters to estimate in taking account of the
stratifying variables, and if the number of these parameters is close to the number of
observations effect estimates can be seriously biased.

Sparse data then can lead to problems of interpretation, and the result of an analysis of
ungrouped data should never be assessed purely on the deviance differences. Effect
estimates and their standard errors are in any case of more interest than significance
levels, but it is also important to examine the data to ensure that categories contain
reasonable numbers of observations. If not, it is necessary either to use a conditional
logistic regression approach, which is not easily implemented, or to combine classes of
the stratifying variables to increase the numbers of observations in each stratum and
reduce the number of nuisance parameters (effect estimates for stratifiers).

GLIM example 7

An example of analysis of data of this type is provided by a study in Edinburgh of
alcohol consumption and problems among brewers and company directors. Several
variables were measured for each of the selected individuals, but we shall concern
ourselves here with only three. The data in Appendix A concern non-abstinent company
directors interviewed for the study, and include the weekly alcohol consumption of the
respondents (in units approximately equal to 1cl of 100% alcohol), the number of days
of the week on which respondents drank and the experience by respondents of
symptoms of alcohol dependence.

The data for the 223 respondents may be entered from a computer file using the GLIM
directive $DINPUT nn, where nn is a channel number which will be associated with the
data file. The program prompts for a file name which should be entered in the manner
appropriate to the computer system being used. The variable names used are AP for
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experience of alcohol dependence symptoms, WKU weekly alcohol consumption and
DS, number of drinking days. The control language and analysis is as follows.

SUNITS 223
$SDATA WKU DS AP
SDINPUT 11
B:DIRDRK.DAT
SCAL N=1

This sets the binomial denominator N (which will be declared in the SERROR directive)
equal to 1 for each individual.

SFAC DS 7
SYVAR AP
SERROR B N

We now fit the full model with alcohol consumption as a variate, and number of
drinking days as a factor at 7 levels.

SFIT DS+WKU4DS.WKUS$

The scaled deviance output is of use only as a marker against which to assess the effect
of deleting variables. It has no other interpretation in terms of the goodness of fit of the
model. (Williams, 1987).

scaled deviance = 126.55 at cycle 8
d.f. = 209

SFIT -DS.WKUS

scaled deviance = 140.10 (change
cycle 4

+13.55) at

d.f. = 215 (change = +6 )

Hence the interaction of drinking days and consumption is required in the model, and in
these circumstances model selection need proceed no further. Adding back this
interaction and displaying the effect estimates gives

SFIT +DS.WKUS

scaled deviance = 126.55 (change = -13.55) at
cycle 8
d.f. = 209 (change = -6 )
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SDIS ES$
estimate S.e. parameter
1 -5.220 1.770 1
2 -8.165 13.79 DS (2)
3 2.353 2.001 DS (3)
4 2.457 2.202 DS (4)
5 3.034 2.062 DS (5)
6 0.9411 2.367 DS (6)
7 1.842 2.028 DS (7)
8 0.1769 0.09299 WKU
9 0.08198 0.2863 DS (2) .WKU
10 -0.1748 0.09474 DS (3) .WKU
11 -0.1320 0.09736 DS (4) .WKU
- 12 -0.1746 0.09476 DS (5) .WKU
13 -0.1306 0.09558 DS (6) .WKU
14 -0.1540 0.09338 DS (7) .WKU

Although it should be clear enough from the parameter estimates that the relationship of
syptomatology and drinking days is not linear on the logistic scale, it is of interest to
confirm this by fitting DS as a VARiate, and defining a new variate to represent the
interaction between consumption and DS.

SVAR DS
SCAL XDS=DS*WKUS
SFIT WKU+DS+XDSS$

scaled deviance = 147.46 at cycle 4
d.f. = 219

The increase in deviance is 20.91 on 10 degrees of freedom, hence the non-linearity of
the relationship is confirmed.

It is not the intention of the present course to attempt to explain and interpret the
substantive findings of the example analyses, but it is important to know how to
interpret the effect estimates. These may be most easily represented on a graph which
relates the log odds ratios of experiencing the symptoms to amount consumed, with
separate lines for each of the seven drinking days categories. For those with only one
drinking day, the slope of the line is 0.1769, while for those with 7 drinking days the
slope is much less, 0.1769-0.1540, only 0.0229, but the intercept of this line is 1.842
above that for one drinking day. For convenience the intercept of the first line may be
considered zero.
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2.5 Analysis of matched pairs

An instance where conditional methods are easy to use in GLIM is the analysis of
matched sets, and for simplicity this is illustrated by consideration of the matched pair
case-control study. As the name suggests, the design of the study is that each case is
individually matched with a control on a number of characteristics which are thought to
be potential confounders. A case-control pair can therefore be thought of as a single
stratum, where the strata are defined in terms of combinations of levels and values of
the matching variables. The exposure status of case and control is recorded and a
summary table can be drawn up as in section 1.5. For analytic purposes the data are
best considered as a set of individual records, one for each case-control pair.

The theoretical basis assumes that the logistic-linear model is appropriate to the
probability of being a case, that is for an individual with values x; of the explanatory
variables

exp(o+pB'xj)
l+exp(a+B'x;i)

P[case/xi] = (2.5.1)

To construct the conditional likelihood for a single case control pair we may write xj;
and xjp as the vectors of explanatory variates for the case and control members of the
pair respectively. The conditional likelihood of interest is then the probability that of the
two members of the pair the xj; corresponds to the case and xjg to the control. From the
model the log odds of being a case for each of these are given by

exp(a+B'xi1) and exp(o+B'xjo) respectively.
Hence the log odds-ratio within each pair for the observation is given by

exp(B'(xi1-Xi0)) (2.5.2)

which may be fitted in the usual way, provided that the intercept (in GLIM model
notation "1") is omitted from the models.

Alternatively, the probability of being a case for each member of the pair is given by

exp(o+B'xiy) and exp(o+B'xip)

(2.5.3)
1+exp(a+PB'xi1) 1+exp(a+B'x;0)
respectively. Thus the required probability is
exp(a+pB'xi) 1
l+exp(a+P'xi1) 1+exp(a+P'xig)
exp(a+B'xiy) 1 L _Sxp(atBxio) 1
l+exp(a+P'xj1) I+exp(o+B'xjp) 1+exp(a+B'xjo) 1+exp(a+P'xi1)
...(2.5.4)
which can easily be seen to simplify to
1 (2.5.5)

1+exp(B'(xj0-xi1))
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equivalent to the usual form of logistic model probability

exp(B'(xi1-Xi0))
1+exp(B'(xi1-Xi0))

(2.5.6)

in which there is no intercept term and the explanatory variates are the within-pair
differences (case - control) on the independent variates. If there are n pairs the
likelihood is simply the product of the n expressions above for each pair. Notice that
variates which are used in the matching process will be identically zero for all pairs, and
thus their influence on risk cannot be estimated. We may assess whether they modify
the effects of exposure by forming the appropriate products as variates or factors to be

-entered in the model. Factors pose a slight problem, in that if the factor levels are truly

qualitative the within-pair differences between these are not suitable measures. For
example with a four level factor a case control pair difference of 1 between levels of the
factor could arise in three different ways, with different interpretations. This may be
dealt with by creating dummy variables corresponding to combinations of factor levels
in the pairs.

A GLIM analysis proceeds by entering the data as within-pair differences, declaring a
YVAR equal to 1 in all cases, and fitting models each of which excludes the intercept,
by specifying "-1" in the $FIT directive. The "null fit" for this approach is obtained by
declaring a vector of zeroes and fitting this, without an intercept (equivalent to a
probability of 0.5 for each pair).
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GLIM example 8

A simple example of a matched study is provided by the following data based on a
psychiatric study in Edinburgh of young women who had undergone appendectomy,
but were found to have normal (non-inflamed) appendices. 39 such women were
individually matched on the bases of age, social class and educational background with
39 women from a community sample. All subjects were interviewed, and their _
experience of life events, difficulties and level of social support were ascertained. The
social support measurement was actually an ordered qualitative variate (a factor), but is
coded for simplicity as zero when both case and control had the same level of social
support, 1 when the case had more support than the control, and -1 when the control
member of the pair had more support than the case. The analysis undertaken here does
not attempt to assess the influence of interaction terms. However this can be done if
required by forming appropriate interaction variables separately for the case and control
members of each pair and taking the within-pair differences in the usual way.

The data are contained in Appendix B, and have been changed from those in the original
study (Vassilas, M.Phil. Thesis, 1988, unpublished). For the purpose of the GLIM
analysis the data have been entered as within-pair differences, case-control, and stored
in the file PAIRDAT. Variable names used are EVENT, for differences in experience of
life events, DIFF for differences in experience of difficulties, and SUPPORT for
differences in level of social support available.

SUNITS 39

SDATA EVENT DIFF SUPPORT
SDINPUT 10 $

File name? B:PAIRDAT
SCAL ZERO=0

SCAL R=1

SCAL N=1

SYVAR R

SERROR B N

SFIT ZERO-1$

This null fit is of interest only as a reference point for evaluating the contributions of the
variables to be fitted.

scaled deviance = 54.065 at cycle 2
d.f. = 39

$FIT EVENT+DIFF+SUPPORT-1$

scaled deviance = 42.019 at cycle 4
d.f. = 36

The deviance reduction of about 12.0 on 3 degrees of freedom indicates that one or
more of the fitted variables is significantly associated with appendectomy. In order to
simplify the process of fitting and reducing the number of terms in the model it is useful
to examine the effect estimates.

SDISPLAY ES
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estimate s.e. parameter
1 1.734 0.6397 EVEN
2 0.2070 0.5941 DIFF
3 -0.1579 0.5656 SUPP

It appears that difficulties and social support are not significantly associated with
appendectomy, and although elimination of one of these could increase the significance
of the other, in this case elimination of both shows that neither is required in the model.

SFIT EVENT-1$

scaled deviance = 42.178 at cycle 4
d.f. = 38

Clearly there is no question of either of the individual 2 statistics for DIFF or
SUPPORT being significant when together they only reduce the deviance by 0.157. For
completeness it would be desirable to assess each on its own compared to the null fit,
but for brevity this is left to the reader. The estimated log odds ratio corresponding to
experience of a life event is obtained by

SDISPLAY ES

estimate s.e. parameter
1 1.791 0.6154 EVEN

which can be transformed to give an odds ratio estimate of 6.00, obtainable directly by
applying the formula given by equation (1.5.1) to the data for event differences.

2.6 Multivariate modelling and joint action.

There has been a great deal of interest over the past fifteen years or so in the concepts of
synergism and antagonism between causal agents in epidemiological research, and this
has led to attempts to characterise certain modes of joint action as synergistic or
antagonistic. For example Brown & Harris (1978) analysed data concerning the
incidence of depression in women in Camberwell, London and claimed to have detected
an interaction between the risk factors "experience of a severe life event” and "lack of
intimacy” (in the sense of a confiding relationship with a partner).

Some of their data on this subject are represented in table 9 (taken from Everitt &
Smith, 1979).

Table 9: Depression in women in Camberwell

Lack of intimacy
Yes No
Severe eventYes No Yes No
Case 24 2 9 2
Non-case 52 60 79 191
Total 76 62 88 193

Rates 0.32 0.03 0.10 0.01




Since this was a community study the rates may be directly estimated by the proportions
in each column. It can be seen that the relative risks due to experience of a severe event
are approximately equal in each of the intimacy categories, and symmetrically, that the
relative risks due to lack of intimacy are similar in each of the event categories. Thus, in
terms of relative risk lack of intimacy is not a modifier of the "effect" of a severe event.
However if we consider rate differences rather than ratios the rate difference due to
experience of a severe event in those who lack intimacy is 0.29 compared with only
0.09 among those who have an intimate relationship. On an additive interpretation of
effect, lack of intimacy is an effect modifier.

Brown & Harris noticed that among those not experiencing a severe event the 2
statistic for the relevant 2x2 table was not significant. From this they concluded that lack
of intimacy was not itself a risk factor, and led to increased risk only in conjunction
with a severe event. They accordingly identified lack of intimacy as a "vulnerability
factor”, whereas experience of a severe event was considered a "provoking agent".

Statistical interaction depends on the scale of measurement. In the present example a
multiplicative measurement of effect as in a logistic-linear model fits the data adequately
without the need for an interaction term, whereas an additive model would require such
a term. The scale of measurement of effect and model for combination of effects cannot
be entirely at choice, since an additive model of risk difference may lead to difficulties
associated with all risks involved in the model being required to lie between 0 and 1 as
they are probabilities. Similarly, a multiplicative model for relative risk could lead to
absolute risks of greater than 1, whereas a multiplicative odds-ratio model such as the
logistic-linear model will not lead to this inconsistency.

The application of statistical methods to data of this type cannot therefore be expected to
yield definitive conclusions regarding synergism, antagonism or their absence.
Rothman (1986) proposes a model for interaction which takes as axiomatic the
measurement of effect in terms of rate difference. Walter & Holford (1978) present
models of causation and joint action which give rise to additive, multiplicative and other
models of joint action, showing in effect that there is no inherently "natural” way in
which causal agents act together.

Causal models giving rise to various forms of joint action can be elaborated, and to
some extent tested. However it is not always possible to test these with any degree of
power on the basis of a single epidemiological study. In the example considered it
seems that the main qualification of lack of intimacy as a vulnerability factor is that it
does not increase the risk of depression except in conjunction with the provoking agent.
One might therefore attempt to assemble a large sample of individuals free of the
provoking agent, in order to perform a sensitive test of the potential effect of the
vulnerability factor (a negative result being essential to the hypothesis). This approach
will not work if there is misclassification of individuals as not exposed to a provoking
agent when they are so exposed. It will also be ineffective if there exist other provoking
agents which are unknown and which are potentiated by lack of intimacy. In both these
cases there will be a higher rate of depression among those lacking intimacy because of
the presence in the study of individuals exposed to an undetected provoking agent.

2.7 Analysis of vital rates

The comparison of mortality and morbidity rates between countries at a single point in
time or within a country over several time periods forms an important part of descriptive
epidemiology. Such comparisons may lead to hypotheses concerning possible risk
factors which may subsequently be tested by more direct investigation, quite apart from
the importance of monitoring rates over time in a single country for administrative
reasons.
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Mortality rates may be considered as realisations of binomial random variables and
logistic-linear modelling may be applied using the approach of Chapter 2, but it is
sometimes useful to model vital rates using a Poisson error structure with the logarithm
of total population at risk as an offset, and a logarithmic link function. The results of
this approach are exactly similar to the more obviously appropriate binomial model.

2.8 Age-period-cohort models

A particular case of modelling vital rates is the age-period-cohort model, in which the
explanatory variates are all essentially demographic in nature. A table of age-specific
rates for a number of time periods is constructed or abstracted from official statistics,
and subjected to analysis, taking age group, time period and period of birth as the
independent variables. It should be borne in mind that none of the above three factors
are direct influences on mortality. Rather an age-period-cohort analysis is motivated by
the idea that each is a proxy for a particular type of risk factor. Age might be considered
as representing physiological variables associated with the ageing process, while period
represents contemporary influences on mortality, such as environmental hazards.
Cohort is usually held to stand for historical or delayed influences which are more or
less common to all those with the same period of birth.

An example of an age-period-cohort analysis is provided by Duffy & Latcham (1986)
who analysed liver cirrhosis mortality in Scotland and England & Wales over the period
1941-1981 in five year intervals by sex and age-group in five-year bands from 30-34 to
70-74.

Table 10 contains a subset of the data for Scottish males for the period 1961-1981
taken from the larger table in the original paper.

Table 10: Liver cirrhosis mortality in Scotland 1961-1981

Age 1961 1966 1971 1976 1981
Group I n I n T n T n T n
30-34 3 163 0 154 1 147 1 157 4 185
35-39 2 170 1 156 4 147 4 145 10 155
40-44 2 154 6 163 3 151 8 143 13 144
45-49 7 163 14 148 9 156 20 146 30 142
50-54 19 165 16 154 12 140 25 149 36 142
55-59 21 148 23 152 13 142 24 131 45 141
60-64 23 114 24 130 18 134 30 127 45 118
65-69 20 84 25 93 25 107 32 111 35 108
70-74 13 60 13 62 16 69 21 79 21 86

The columns headed r contain the numbers of deaths in the appropriate age group and
period, and the corresponding total population at risk (in thousands) is denoted by n.
The table therefore contains information concerning five time periods and nine age-
bands. The basis of cohort identification is that the population at risk of death in age-
band 30-34 in 1961 comprises the same individuals (apart from losses by death or
migration) as that in age-band 35-39 in 1966 and so on. Thus the data represents the
experience of several birth cohorts, easily deduced to be 13 in all.

However the level of the cohort factor for a particular r and n is a linear combination of
the corresponding levels of age and period, satisfying the relation

COH =a+PER-AGE  (4.1.1)
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where COH, PER and AGE represent the levels of these factors, and a is the total
number of levels of AGE. Thus in this formulation cohort 1 for the above data were the
oldest age group in 1941, and appear only once in the dataset. Cohort 13 corresponds to
the youngest age group in 1981 and also appears only once. This linear dependence
leads to the so-called identification problem. The linear effect of cohort is confounded
with the linear effects of period and age, or more precisely all three effects are
confounded. This leads to unidentifiability of one of the linear effects in the model, and
implies that for estimation of the full model, fitting each of the factors together there are

a+p+c-4 (4.1.2)

degrees of freedom, one less than might be expected, where a, p and ¢ are the number
of levels of the respective factors.

GLIM example 9

To illustrate this method the following GLIM analysis was performed on the data.

SUNITS 45
SDATA R N
SDINPUT 10
FILE NAME? COHORTDAT

The data are read in from a file containing only numbers of deaths and numbers at risk,
with age and period calculated within GLIM by means of the %GL function.

$CAL PER=%GL(5,1)
SCAL AGE=%GL(9, 5)
S

These instructions assign values from 1 to 5 in sets of 1 to the vector PER, and values
from 1 to 9 in sets of 5 to AGE. The vectors themselves are of length 45, set by the
$UNITS directive. The values correspond to data being entered by periods within age
groups.

SCAL N=N*1000
SYVAR R

SERROR B N

SFAC AGE 9 PER 5
SFIT AGE+PERS

scaled deviance = 36.616 at cycle 3
d.f. = 32

We may now create and declare the cohort variable as a factor at 13 levels, as follows

$CAL COH=9+PER-AGE

SFAC COH 133

SFIT +COHS

scaled deviance = 17.021 (change = =19.59) at cycle
4

d.f. = 21 (change = -11 )




Notice that there are only 11 degrees of freedom for the cohort factor, despite it having
13 levels. this illustrates the confounding of the linear effect of cohort with the other
two factors. The change in deviance shows that terms in cohort are not required in the
model, that is that there are no significant non-linearities associated with the levels of
cohort. For illustrative purposes it is nevertheless useful to show the effect estimates.

SDIS ES$
-11.68 0.3910 1
1.060 0.4681 AGE (2)
1.0649 0.4503 AGE (3)
2.681 0.4153 AGE (4)
3.069 0.4023 AGE (5)
3.255 0.3988 AGE (6)
3.453 0.4024 AGE (7)
3.569 0.4149 AGE (8)
3.246 0.4226 AGE (9)
0.1783 0.1467 PER (2)
0.04866 0.1886 PER (3)
0.5912 0.2257 PER (4)
0.9416 0.2638 PER (5)
-0.2216 0.3293 COH (2)
-0.2146 0.3135 COH (3)
-0.4183 0.3170 COH (4)
-0.6427 0.3329 COH (5)
-0.8230 0.3707 COH (6)
-0.6591 0.4107 COH (7)
-0.6134 0.4540 COH (8)
-0.5698 0.4995 COH (9)
-0.3807 0.55006 COH (10)
-0.2820 0.6191 COH (11)
-0.09225 0.6612 COH (12)
0.000 aliased COH (13)

Again, the confounding is illustrated by the absence of an estimate for cohort 13. The
next question of interest is to assess whether both age and period are needed in the
model. We may address this by deleting them in turn, fitting models in age only and
period only, and also assess whether either of the factors may be replaced by a variate.
In this instance it turns out that the answer in both cases is that they cannot, as may be
seen by comparing the residual deviances from the two models below with that for the
first model fitted. Accordingly it follows that both factors are needed.

SVAR AGE
-- change to data affects model
SFIT PER+AGES
scaled deviance = 104.75 at cycle 4
d.f. = 39
SVAR PER
—— change to data affects model




SFAC AGE 9

SFIT AGE+PER$

scaled deviance = 57.844 at cycle 3
d.f. = 35

It remains only to display the estimates from the model including both age and period as
factors.

$DIS ES
estimate s.e. parameter
-4.854 0.3475 1
0.9425 0.4006 AGE (2)
1.416 0.3798 AGE (3)
2.416 0.3545 AGE (4)
2.766 0.3500 AGE (5)
3.013 0.3484 AGE (6)
3.325 0.3479 AGE (7)
3.557 0.3491 AGE (8)
3.329 0.3571 AGE (9)
0.08793 0.1424 PER(2)
-0.1537 0.1483 PER (3)
0.4368 0.1351 PER (4)
0.9322 0.1285 PER(5)

It can be seen that the risk of cirrhosis increases up to age group 8, and declines slightly
for the oldest group (70-74). Periods 4 and 5 are associated with larger risks than
period 1, 2 and 3.

2.9 A note on the identification problem

Several approaches have been suggested to overcome the identification problem, and a
useful summary of the subject is given by Fienberg & Mason (1985). A method
suggested by them is to use an identification specification, that is to assume at the outset
that one or more effect estimates for particular levels of one of the factors are equal.
This certainly permits estimation of the other parameters, but the magnitudes of the
resulting estimates depend on the identification specification used. An identification
specification is easily implemented in GLIM by defining the levels of the factor which
are assumed to have equal effects (the equality set) to be the same, usually the lowest of
the levels in the set.

More recently, Clayton & Schifflers (1987) in a comprehensive review of the age-
period-cohort problem have demonstrated that no matter how the model is cast an
arbitrary linear trend may be added to one set of estimates, making concomitant
adjustments to the others, without loss of a degree of freedom. This "drift" component
cannot be apportioned uniquely to any of the three categories. They conclude that use
of the methodology be restricted to descriptive studies.

It is possible to agree with Clayton's point without necessarily discounting the value of
models of this type. It is sometimes the case that only two of the explanatory factors are
required in the model, and it would seem perverse in those circumstances to refuse to
make any inference simply because an arbitrary linear trend in the third could be
accommodated in the model without changing either the adequacy of explanation (in
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terms of goodness of fit) or the level of complexity of the model (the degrees of
freedom). If there is no necessity to assume a non-zero trend in the third factor, then it
is reasonable to assume it is zero.

Another approach to the identification problem is to substitute an external variate for one
of the classifications. In an age-period-cohort analysis of suicide in England & Wales,
Duffy & Surtees (1989) substituted the level of carbon monoxide in domestic gas for
the period component and obtained a good fit to their data for males. It must be
conceded that an arbitrary linear trend in period might be added to the model, but this
would once again be involving a variate which does not need to appear.



III. SURVIVAL ANALYSIS IN GLIM




55

3 Survival analysis in GLIM.

Although the main focus of this course is the use of logistic-linear models in
epidemiological research, the GLIM package may also be used to perform the analysis
of survival data from clinical trials and other epidemiological studies. Some simple
methods will be illustrated, and attention will be directed mainly towards
implementation of the methodology rather than detailed description of theory. Other
statistical packages such as BMDP, SPSS-X etc also have routines to perform these
types of analyses.

The implementation of methods of survival analysis in GLIM relies for the most part on
specially written routines or sets of GLIM instructions which are called MACRO:s.
These may be stored on the computer system in question and read into a GLIM program
as required using the $INPUT directive. In effect the GLIM system is being as a
programming language or a calculator rather than a model-fitting system for some of
these applications.

3.1 Basic concepts

Survival analysis is concerned with statistical description of the process governing times
to death or some other key event of individuals in an epidemiological study. In most
situations we are concerned to compare two or more groups, to assess for example
whether a particular treatment or exposure to a risk factor changes the expected time to
death. Various characteristics of the study members may be recorded, and their
influence on survival adjusted for in group comparisons.

It is not usually practicable to follow up all subjects selected for study until the
occurrence of the event of interest. Individuals may be lost to follow-up through
withdrawal of cooperation, because of geographical moves, or for other reasons.
Standard practice is to study the groups for a fixed period of time, and not all
individuals will have experienced the event of interest at the end of this period. Thus,
considering the outcome for a study member to be time from an appropriate initial point
(such as date on which an illness was diagnosed) to time of the event, for some cases
the information available is only that the event had not occurred at time t;, and we say
that the observation is censored (or right-censored, as it sometimes happens that we
may know the time of the event, but not the appropriate start time for an individual, in
which case the observation is left-censored). This type of censoring is often called
progressive censoring, to distinguish it from the situation in which all individuals have
the same starting time in a study of fixed length (single censoring), as in carcinogenicity
experiments on animals. Methods of dealing with censoring described in this chapter
assume that censoring occurs at random, and is not related directly to group
membership or subsequent survival.

Of the possible approaches to this problem it is worth making a distinction from the start
between parametric or distributional methods and distribution-free methods. The first
type involve the assumption of a particular probability distribution governing times to
death, and estimation of its parameters, whereas distribution-free approaches do not
require the assumption of a particular distributional form.

3.2 Introductory theory

Understanding ofthe methods to be illustrated will be facilitated by knowledge of the
statistical basis of the subject. In this section some elementary ideas of survival analysis
will be described mathematically, and for simplicity of terminology we shall consider
the event of interest to be death.
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We may describe the probability distribution of time to death from an appropriate initial
point in a number of ways. The cumulative distribution function of time to death, T, that
is the probability of dying before t, is defined as

Ft)=P[ T <t] :t20 (3.2.1)

and from this we may define the death density function assuming F(t) to be
differentiable as

dE(t)

fO="g

(3.2.2)

However it is more usual to consider the survival function, the probability that an
individual survives until at least time t, which is just the complement of F(t)

S(v) = 1-F(v) : t20 (3.2.3)

A function related to these and very widely used is the hazard function, also called the
instantaneous death rate, failure rate or force of mortality. It may be denoted by A(t),

and the probability of death in the infinitesimal interval (t,t+0t), given survival to time t
is given by

A() &t (3.2.4)

It is easy to show that A(t) is related to the previously defined quantities as

At) =§(—(% (3.2.5)

Several explicit functional forms are commonly applied in the analysis of survival data.
For example a constant hazard rate leads to the exponential distribution of times to
death. This may be generalised to a gamma distribution, which permits the hazard rate
to increase or decrease with time according to whether the shape parameter is > or < 1.
The corresponding hazard function for integer n is

nen-1 I
lnfl [@D! 920 (326

z (AViv!
v=0

A=

The hazard rate

AD =AYy @81 Ay820  (3.2.7)

leads to the Weibull distribution of times to death. This hazard rate is widely used in the
analysis of survival data, often with 8 assumed known or zero. As in the case of the

gamma model, the Weibull hazard increases or decreases with time according as 7y is
greater or less than 1, and provides a good fit to survival data of many types. Both the
exponential and Weibull distributions may be fitted to censored survival data using a
macro, originally described by Aitkin & Clayton(1980) supplied in the GLIM macro
library.
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3.3 Lifetables and the Kaplan-Meier survival estimate.

A set of survival data may be simply described by construction of a lifetable, and
graphically represented by a survival curve. Data may be grouped into intervals by time
of deaths, or considered as a set of individual observations. An example of the latter is
provided by the survival times of 38 patients diagnosed as suffering from adenoid cystic
carcinoma reported by Marsh and Allen, 1979. Appendix C summarises selected
variates from those published.

Times in column 1 are years from onset of symptoms to diagnosis. Variables in
columns 2 and 3 indicate methods of treatment used, 1 corresponding to use of the
method, 0 to those cases for which the method was not used. Zero in column 4
indicates that the patient was still alive at the time of ending data collection, that is the
observation is censored, and a 1 that the time in column 5 is indeed a time to death (in
months).

For samples as small as this the Kaplan-Meier (1958) approach is particularly suitable.
Times of death, tj, are ordered from smallest to largest, and for any particular t() we
may write the number of patients still at risk as n; which includes the patient dying at t;.
If one of the censored times is also equal to t; the Kaplan-Meier method includes the
censored patient in the nj. The probability of surviving at least time t (between values 1)
and t(j+1) say) is estimated by

i
$ = H “—i[;—jl-(3.3.1)
i=1

If there is no censoring then this estimate reduces to the simple proportion of survivors
at time t.

An approximate estimate of the variance of § is given by
i

var[S] = [S®]2 an_(nl]T) (3.3.2)

=1

Estimation of the survival function by this method is a computational rather than a
modelling task. However the GLIM package can be used to perform the calculations
involved using specially written macros. Swan (1986) published a macro which
estimates the survival function, produces a line-printer plot of the function, and will also
perform a logrank test of significance of the difference between two survival
distributions.

The survival macro as implemented for the purpose of this text is named SURV, but is
otherwise identical to that originally published. It takes five arguments, the times on
study, a censoring indicator, a weight variable, which determines whether a case is used
or not, an indicator which determines how the intervals to be used are constructed and
another which permits censored observations to be dealt with in different ways.

GLIM example 10

To apply this to the data in appendix C requires the following control language

SUNITS 38
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SDATA SYMT SURG RT IND TIME

SREAD followed by the data, or alternatively

SDINPUT 10 followed by the appropriate filename

SCAL W=1 which indicates that all the data are to be used
SCAL %K=0

SCAL %L=1

SINPUT 11 followed by the filename containing the macro
SUSE SURV TIME IND W %K 3L

The value of the fourth parameter %K in this case is 0, indicating that intervals in which
no death occurred may be omitted, while the fifth parameter, set to 1 indicates that
censored observations should be considered at risk for the whole of the intervals in
which loss occurs.

The survival estimates and standard errors are given in table 10, and the corresponding
lineprinter graph plotted as figure 2.

Separate analyses may be performed for subgroups of the data. One might for example

wish to estimate different survival curves depending on treatment by radiotherapy. This
is easily implemented by changing the weights W by

$CAL W= (RT==1)

to select those who did receive radiotherapy and exclude those who did not, and
rerunning the macro.
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Table 11:Lifetable with estimated survival function and se

WO~ Ud Wik

Top of No. at deaths Lost Razd Est p
Intvl Risk d/ (n-fw) 1-gq Surv
t n d W q P S se
TI NI DI WI_ QI PI_ SI SES__
0.0 38.0 0.0 0.0 0.000 1.00 1.000 0.000
1.0 38.0 1.0 0.0 0.026 0.97 0.974 0.026
2.0 37.0 0.0 1.0 0.000 1.00 0.974 0.026
16.0 36.0 1.0 0.0 0.028 0.97 0.947 0.037
19.0 35.0 1.0 0.0 0.029 0.97 0.920 0.045
23.0 34.0 1.0 0.0 0.029 0.97 0.893 0.051
28.0 33.0 1.0 0.0 0.030 0.97 0.865 0.056
33.0 32.0 1.0 0.0 0.031 0.97 0.838 0.060
35.0 31.0 0.0 1.0 0.000 1.00 0.838 0.060
37.0 30.0 1.0 0.0 0.033 0.97 0.811 0.065
39.0 29.0 0.0 2.0 0.000 1.00 0.811 0.065
40.0 27.0 1.0 0.0 0.037 0.96 0.780 0.069
49.0 26.0 1.0 0.0 0.038 0.96 0.750 0.072
55.0 25.0 1.0 0.0 0.040 0.96 0.720 0.075
57.0 24.0 1.0 0.0 0.042 0.96 0.690 0.078
58.0 23.0 0.0 1.0 0.000 1.00 0.690 0.078
60.0 22.0 1.0 0.0 0.045 0.95 0.659 0.081
67.0 21.0 1.0 0.0 0.048 0.95 0.628 0.083
78.0 20.0 0.0 1.0 0.000 1.00 0.628 0.083
79.0 19.0 1.0 0.0 0.053 0.95 0.595 0.085
81.0 18.0 2.0 0.0 0.111 0.89 0.529 0.087
84.0 16.0 1.0 0.0 0.063 0.94 0.496 0.088
85.0 15.0 1.0 0.0 0.067 0.93 0.462 0.088
87.0 14.0 1.0 0.0 0.071 0.93 0.429 0.088
91.0 13.0 1.0 0.0 0.077 0.92 0.396 0.087
106.0 12.0 1.0 0.0 0.083 0.92 0.363 0.086
108.0 11.0 0.0 1.0 0.000 1.00 0.363 0.086
117.0 10.0 1.0 0.0 0.100 0.90 0.327 0.084
123.0 9.0 0.0 1.0 0.000 1.00 0.327 0.084
126.0 8.0 1.0 0.0 0.125 0.88 0.286 0.083
127.0 7.0 1.0 0.0 0.143 0.86 0.245 0.081
132.0 6.0 1.0 0.0 0.167 0.83 0.204 0.077
157.0 5.0 1.0 0.0 0.200 0.80 0.164 0.072
168.0 4.0 0.0 1.0 0.000 1.00 0.164 0.072
174.0 3.0 0.0 1.0 0.000 1.00 0.164 0.072
211.0 2.0 1.0 0.0 0.500 0.50 0.082 0.068
236.0 1.0 1.0 0.0 1.000 0.00 0.082 0.068
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Figure 2: Lifetable survival curve
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Estimated median survival time= 83.59 with se= 10.70

Figures 3 and 4 show the estimated survival function graphs for the two groups. The
median survival times are not very different but the shapes of the survival curves are
quite dissimilar, although it should be noted that these are drawn on different x scales.
It can be seen that survival estimates do not appear to change after about 100 days for
the radiotherapy treated patients. However the numbers of patients involved are very
small, quite apart from the other aspects of the patients and their experience which must
be taken into account before attempting to draw any conclusions from an analysis.



Figure 3: Lifetable survival curve- radiotherapy
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3.4 The logrank test

A number of distribution-free tests have been adapted for the analysis of survival data.
For the case in which there is no censoring the appropriate nonparametric test may be
applied without modification to the times of death. For example two groups may be
compared by means of the Wilcoxon rank sum test, or equivalently the Mann-Whitney
U-test, while an appropriate test for several groups would be the Kruskal-Wallis
analysis of variance by ranks. Censoring however necessitates adaptation of the tests.

The Wilcoxon test may be adapted following Gehan(1965) by considering all possible
pairs of observations, containing one member from each sample. In calculating the test
statistic using the Mann-Whitney U calculation pairs of censored observations do not
contribute to the total, neither do cases in which the smaller member of the pair is
censored, but all other pairs are counted in the usual fashion. Assuming random
censoring the permutation distribution of the statistic may be constructed for statistical
inference, or a normal approximation may be used.

Perhaps the most widely used distribution-free test for this problem is the logrank test
(Peto & Peto,1972). The test is applicable to the comparison of any number of groups,
but is most simply described for the two group case. Only intervals in which one or
more deaths occur are involved in the calculation, which essentially involves dividing
the observed number of deaths in a particular interval into expected numbers of deaths
in each in accordance with the number of individuals at risk in the groups. Thus if say
on a particular day i there are d; deaths, and njj and np; persons at risk in each group the
expected number of deaths in the first group is given by

djnjj
P (3.4.1)

while those for the second group are given by (3.4.1) replacing nij in the numerator by
noj.

The total expected numbers of deaths for each group, Ej and Ej say are formed by
adding over all the days in question, and these are compared with the total observed
deaths O1 and O, by calculating

- 2 _ 2
@EI;:_L)_ + @E—Ez)— (3.4.2)

which may be compared with the %2 distribution on 1 degree of freedom to assess the
significance of the difference. When more than two groups are involved formula 3.4.2
is simply extended to the appropriate number of groups, and the degrees of freedom for
the test are increased appropriately.

The death rate ratio between the two groups may be estimated as

O1/E1
OyE> (3.4.3)

In cases where it is not reasonable to assume constant death rates within each group
over time 3.4.3 is effectively an average death rate ratio.

The paper by Swan (1985) provides a macro for performing the logrank test for two
groups, taking as input the vectors constructed by the macro SURYV applied to each
group. The total numbers of deaths and subjects at risk are contained in the vectors di__
and ni_ after using the macro. The procedure therefore is to define a weight variable to
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be 1 for the first group, and O for the second, use the macro, rename the above vectors,
redefine the weight variable to select the second group, use the macro again and then
rename the vectors and use the macro LRT.

GLIM example 11

Assuming that the adenoid cystic carcinoma data has been entered into GLIM as for the
previous example we might compare death rates between those who received
radiotherapy and the remainder by the logrank test as follows

SUSE SURV TIME IND RT %K %L
$CAL NR=NI

$CAL DR=DI

$CAL W=%IF (RT==0,1,0)

$USE SURV TIME IND RT %K %L
$CAL ND=NI

$CAL DD=DI

$USE LRT NR DR ND DD

The output from the above is particularly simple

The logrank chisquared on 1 df is 0.1490

Extension to comparisons of several groups is straightforward by making minor
modifications to the macro.

3.5 Cox regression and the proportional hazards model

Equation 3.2.4 defined the hazard rate in terms of the probability of death in the interval

(1,t+3t) given survival to time t. Cox (1972) suggested use of partial likelihood methods
based on hazard rates of the form

A(Lx) = Ao(t)exp(Bx)(3.5.1)

where A(t) is an arbitrary unknown function of t, x is a vector of explanatory variables
and B is a vector of unknown parameters.

Considering a death of an individual with explanatory variables x; occurring at tj the
contribution to the overall likelihood may by a conditional argument be written as

exp(B'xy)

(3.5.2)
ZFXP(ﬁ Xj)
]

where the suffix j runs over all those individuals alive and not censored at time t;, that is

those at risk of death at t;. Notice that A(t) cancels, and therefore does not require to
be estimated in this formulation. In the event of censoring occurring at t; the individual
concerned is counted as being at risk at t; as was the case for the logrank test and the
Kaplan-Meier estimate.

Thus, the overall partial likelihood associated with the set of observations is the product
of terms 3.5.2 over all deaths. There has been considerable theoretical investigation of
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this model, and among other results it has been shown that maximum likelihood
estimation based on the product of terms like 3.5.2 leads to the same estimate of 3 as
is obtained by simultaneous maximum likelihood estimation of Aq(t) and B.

This method is implemented on several statistical analysis systems, but attention is
restricted here to the GLIM package. An initial approach to the use of GLIM for the
Cox model was described by Whitehead (1980), but is sufficiently complicated to lead
to suggestions that it would be simpler and more economical of computer time to write a
Fortran program to perform the analysis (Morris, 1985). A more recent algorithm,
easily implemented on GLIM was provided by Clayton & Cuzick (1985) which can be
shown to lead to correct estimates of the unknown parameters and appropriate deviance
statistics, although standard errors of the parameters are slightly underestimated.

GLIM example 12

Appendix D contains data from a random sample of 108 admissions to the Regional
Poisoning Treatment Centre of the Royal Infirmary of Edinburgh following an act of
self-poisoning or self-injury (parasuicide) in the years 1982 to 1985 inclusive. for each
selected admission the time to the next admission for parasuicide was recorded, along
with some demographic information. Most of the individuals had no subsequent
admission, so their times are right-censored. The table contains information on sex,
age, censoring and time to next admission in days. Males are coded as 1 on the sex
variable, females as 2, ages are in years and a value O of the indicator marks a censored
observation.

The GLIM macros to perform the analysis are identical to those given by Clayton &
Cuzick (1985) and have been given the same names as in that paper. Assuming that the
data in Appendix 4 has been read into GLIM with names SEX, AGE, IND and TIME
the following GLIM control language is used to perform the analysis.

SCAL TIME=TIME-IND*0.001

SARGUMENT COX1 TIME IND

SFACTOR SEX 2

SUSE COX1

$

Partial likelihood deviance for null model=
254.04704

SFIT SEXS

scaled deviance = 119.57 at cycle 5
d.f. = 106

SUSE COX2

$

——- change to data affects model
scaled deviance = 120.23 at cycle 5
d.f. = 106

—-— change to data affects model
scaled deviance = 120.24 at cycle 5
d.f. = 106




partial likelihood deviance= 252.08716

The above instructions first of all ensure that all observations censored at the same time
as the occurrence of a death are entered into the appropriate risk set, by slightly reducing
the times of deaths only. The arguments for the macro are declared to be times to
repetition and the censoring indicators by the ARGUMENT directive and the macro
COX1 is used to perform an initialisation and a null fit. Then a term for SEX is
introduced into the model, and the macro COX2 used to estimate the corresponding
parameter and the associated deviance. The GLIM deviances are of no relevance to the
analysis, and the macros provide correct partial likelihood deviances which should be
used for inference. The difference in deviance between the null fit and the model
including sex is about 1.96, on 1 degree of freedom, and therefore not statistically
significant.

Age and age and sex together may now be fitted in the same way. Again only the partial
likelihood deviances should be used for inference.

SFIT AGES

scaled deviance = 122.19 at cycle 5
d.f. = 106

SUSE COX2

$

—-— change to data affects model

scaled deviance =
d.f. =

—— change to data
scaled deviance =
d.f. =

partial likelihood deviance=

SFIT SEX+AGES
scaled deviance =
d.f. =

SUSE COX2$

-- change to data

scaled deviance =
d.f. =

-— change to data
scaled deviance =
d.f. =

partial likelihood deviance=

SDISPLAY ES
estimate
1 0.2454

121.51 at cycle 5
106

affects model
121.51 at cycle 5
106

254.03711
119.56 at cycle 5
105

affects model
120.23 at cycle 5
105

affects model

120.23 at cycle 5

105

252.08583

Ss.e. parameter
0.4972 1
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2 -0.5221 0.3717 SEX (2)
3 0.0004776 0.01258 AGE
scale parameter taken as 1.000

The parameter estimates suggest that men are at greater (albeit not significantly greater)
risk of repetition, but that age appears to have no appreciable influence on risk.

The standard errors of the parameters are likely to be close to those that would be
obtained by an exact analysis, but Clayton & Cuzick suggest obtaining a confidence
interval for a parameter by trial and error substitution of fixed values of the parameter
into the model and examining the resulting partial likelihood deviances. This
substitution may be achieved by use of the GLIM $OFFSET directive entering the fixed
value of the parameter, and then maximisation using the MACRO over the remaining
parameter values. The deviance changes are assessed by comparison with the

appropriate %age points of the 2 distribution.
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Appendix A: Drinking days, weekly consumption and experience of alcohol dependence
symptoms of 223 company directors

DS WKU AP DS WKU AP DS WKU AP

3 15 0 7 50 1 2 16 0
3 24 0 4 29 1 1 4 0
6 82 1 2 5 0 1 12 0
7 65 0 7 210 1 4 32 0
3 23 0 1 3 0 5 33 0
4 48 1 4 18 0 7 50 0
4 29 0 7 81 0 1 14 0
3 13 0 3 20 0 1 1 0
3 19 0 7 59 0 5 26 0
2 24 0 2 12 0 ) 46 1
1 1 0 7 78 0 1 4 0
5 25 0 6 56 0 5 16 0
6 129 1 3 29 0 7 54 0
3 28 0 5 40 0 1 4 0
3 45 1 7126 0 3 14 0
2 9 0 7 52 0 4 57 1
2 52 0 6 30 0 4 84 0
2 13 0 1 28 1 2 25 0
4 48 1 1 12 0 3 24 0
5 26 0 1 16 0 1 2 0
) 62 0 1 28 0 1 12 0
3 13 0 4 19 0 5 38 0
5 35 0 4 43 0 I 12 0
5 54 1 3 1o 0 7 74 0
2 16 0 3 54 0 2 30 0
1 10 0 1 14 0 2 26 0
3 21 0 5 22 0 1 1 0
S 38 0 6 110 0 5 38 0
5 42 0 1 13 0 7 74 0
5 40 0 6 92 1 5 64 0
2 8 0 7 92 0 4 26 0
1 14 0 2 8 0 7 97 0
2 18 0 5 39 0 1 2 0
2 17 0 4 30 0 2 32 0
7 63 0 5 40 1 4 7 0
7201 1 7 102 1 7 30 0
1 10 1 7 33 0 7 54 0
2 22 0 1 6 0 6 38 0
3 38 0 7 108 0 3 20 0
1 1 0 6 40 0 6 14 0
6 36 0 2 16 0 6 36 0
3 11 0 7 35 0 6 61 0
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Appendix B: Appendectomy data- case-control differences

EVENT DIFF SUPPORT
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Appendix C: Survival of adenoid cystic carcinoma patients

Duration of surgery radio censoring time
symptoms therapy indicator on study
11.0 1 126
1 19
1 117
1 33
0 35
1 236
1 132
1 85
0 168
0 108
0 78
0 39
0 2
0 58
1 211
0 174
1 55
1 40
0 39
1 o1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

w
(O]

HOOoOUMWROORF Wbk wo

157
81
123
106
16
28
81
67
23
49
84
127
87
60
37
57
79
1

.

l\)l——’»bF—‘OOOU’IO\]}—JO\M(A)I—'!—‘P—‘UWU'IOI—’OO[\)O—JI—‘OOO}—‘»DOOOC)[\)

COO0OONWHRFRPOWOOOoOoRHRHOWORr O
OCOOROROHMHMHEHOPFHRPRPROOROODOOORRPFPORPPPFPORFPFPOOOREPOOO

EFE PR OO R PO, PO RRPRRRERERRPRPORRPRPEPREPEREREREREREREREOR



Appendix D: Parasuicide repetition data

SEX AGE IND

TIME
1
357
1
136
1
168
1
233
1
1224
1
545
1
960
1
1387
1
933
1
1152
1
681
1
384
1
308
1
521
1
413
1
590
1
329
1
88
1
1039
1
1038
1
402

78

62

59

57

0

0

O

TIME

SEX

282

1235

1316

104

161

922

472

316

281

628

162

71

931

17

50

39

976

1334

1065

82

164

2

AGE IND
22 1
21 0
22 0
22 1
21 0
20 0
19 0
19 0
21 0
18 0
20 0
17 0
19 0
18 0
16 0
15 1
16 0
16 0
16 0
15 0
15 0

SEX AGE IND
TIME
1 19
499
1 19
1318
1 17
708
1 14
392
2 75
917
2 71
778
2 65
1216
2 59
1194
2 58
237
2 54
1140
2 53
151
2 49
1092
2 50
210
2 48
577
2 46
1139
2 45
82
2 44
813
2 43
542
2 40
430
2 39
424
2 41
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