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AURKEZPENA

Nazioarteko Estatistika Mintegia antolatzean, hainbat helburu bete nahi ditu EUSTAT-
Euskal Estatistika Erakundeak:

- Unibertsitatearekiko eta, batez ere, Estatistika-Sailekiko lankidetza bultzatzea.

- Funtzionarioen, irakasleen, ikasleen eta estatistikaren alorrean interesatuta egon daitezkeen
guztien lanbide-hobekuntza erraztea.

- Estatistika alorrean mundu mailan abangoardian dauden irakasle eta ikertzaile ospetsuak
Euskadira ekartzea, horrek eragin ona izango baitu, zuzeneko harremanei eta esperientziak
ezagutzeari dagokienez.

Jarduera osagarri gisa, eta interesatuta egon litezkeen ahalik eta pertsona eta erakunde
gehienetara iristearren, ikastaro horietako txostenak argitaratzea erabaki dugu, beti ere
txostengilearen jatorrizko hizkuntza errespetatuz; horrela, gai horri buruzko. ezagutza gure
herrian zabaltzen laguntzeko.

Vitoria-Gasteiz, 2000ko Otsaila

LOURDES LLORENS ABANDO
EUSTATeko Zuzendari Nagusia

PRESENTATION

In promoting the International Statistical Seminars, EUSTAT-The Basque Statistics Institute
wishes to achieve several aims:

- Encourage the collaboration with the universities, especially with their statistical
departments.

- Facilitate the professional recycling of civil servants, university teachers, students and
whoever else may be interested in the statistical field.

- Bring to the Basque Country illustrious professors and investigators in the vanguard of
statistical subjects, on a worldwide level, with the subsequent positive effect  of
encouraging direct relationships and sharing knowledge of experiences.

As a complementary activity and in order to reach as many interested people and institutions
as possible, it has been decided to publish the papers of these courses, always respecting the
original language of the author, to contribute in this way towards the growth of knowledge
concerning this subject in our country.

Vitoria-Gasteiz, February 2000

LOURDES LLORENS ABANDO
General Director of EUSTAT



PRESENTACION

Al promover los Seminarios Internacionales de Estadistica, el EUSTAT-Instituto Vasco de
Estadistica pretende cubrir varios objetivos:

- Fomentar la colaboracion con la Universidad y en especial con los Departamentos de
Estadistica.

- Facilitar el reciclaje profesional de funcionarios, profesores, alumnos y cuantos puedan
estar interesados en el campo estadistico.

- Traer a Euskadi a ilustres profesores e investigadores de vanguardia en materia estadistica,
a nivel mundial, con el consiguiente efecto positivo en cuanto a la relacion directa y
conocimiento de experiencias.

Como actuacién complementaria y para llegar al mayor numero posible de personas e
Instituciones interesadas, se ha decidido publicar las ponencias de estos cursos, respetando en
todo caso la lengua original del ponente, para contribuir asi a acrecentar el conocimiento
sobre esta materia en nuestro Pais.

Vitoria-Gasteiz, Febrero 2000

LOURDES LLORENS ABANDO
Directora General de EUSTAT
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SMALL AREA ESTIMATION : METHODS AND APPLICATIONS

JN.K. Rao
Carleton University, Ottawa, Canada

Small area estimation has received a lot of attention in recent years due to growing
demand for reliable small area statistics. Traditional area specific direct estimates do not
provide adequate precision for small areas because sample sizes in small areas are seldom
large enough. This makes it necessary to employ indirect estimators that borrow data from
related areas to increase the effective sample size and thus increase the precision. Such
indirect estimators are based on either implicit or explicit models that provide a link to related
areas through supplementary data such as recent census counts and administrative records.
The main purpose of this short monograph is to provide an introduction to indirect estimation
methods, traditional as well as model-based. Methods for measuring the variability of the
estimates are also presented as well as techniques for model validation. A basic area-level
linear model is used to illustrate the methods, and then various extensions are presented,
including binary response data through generalized linear mixed models and time series data
through linear models that combine cross-sectional and time series features. Several recent
applications of small area estimation are also given, including those in U.S. Federal Programs.
Design issues that have impact on small area estimation are discussed.

The monograph is divided into five parts. Part 1 presents terminology, notation, direct
estimation methods and design issues. Demographic methods and tradition indirect estimation
methods based on implicit models are studied in Part 2. Basic area level and unit level
models are introduced in Part 3 and model-based estimators, methods for measuring their
variablility, model diagnostics and several applications are then presented. Various
extensions of the basic model are studied in Part 4 as well as a variety of applications.
Finally, cautions that need to be exercised in using indirect estimates and some
recommendations are presented in Part 5.
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1 TRADITIONAL DIRECT ESTIMATORS

1.1 Introduction

A geographical area or more generally any subpopulation (domain) is regarded as a
“small area” if the number of domain-specific sample observations is small. Typically,
domain sample size tends to increase with the size of the domain, but this is not always true.
For example, the U.S. Third National Health and National Examination Survey (NHANES
III), was designed to provide reliable estimates for domains classified by race-ethnicity and
age. In this example, states may be regarded as small areas because the area-specific sample
sizes are small (even zero) for many states.

Small area estimates are needed in formulating policies and programs, in allocation of
government funds, in regional programs and so on. Demand for reliable small area statistics
from both public and private sectors has grown rapidly in recent years.

Censuses usually provide detailed information on a limited number of items once in
five or ten years. Administrative records can provide data more frequently but suffer from
coverage problems. On the other hand, sample surveys can provide information on wide-
ranging topics at frequent intervals of time and at reduced cost. Data obtained from sample
surveys can be used to derive reliable direct estimates for large areas (with large samples), but
sample sizes in small areas are rarely large enough for area-specific direct estimators to
provide adequate precision for small areas. This makes it necessary to borrow data from
related areas to find indirect estimators that increase the effective sample size and thus
increase the precision. Such indirect estimators are based on either implicit or explicit models
that provide a link to related small areas through supplementary data such as recent census
counts and administrative records. The focus of this monograph is on indirect estimators that
include (1) estimators based on implicit models and (2) model-based estimators. Group (1)
contains synthetic and composite estimators, while group (2) covers empirical Bayes (EB) and
hierarchical Bayes (HB) estimators. Demographers have long been using a variety of
methods for small area estimation of population and other characteristics of interest in post-
censal years. These methods use implicit models and utilize current data from administrative
registers in conjunction with related data from the latest census. In a recent application,
model-based estimates of poor school-age children are produced at the county and school
district level (National Research Council, 1998). Using these estimates, the U.S. Department
of Education allocates over $7 billion of federal funds to counties and school districts.

Ghosh and Rao (1994) and Rao (1999) provided comprehensive overviews of methods
for small area estimation. Singh, Gambino and Mantel (1994) discussed design issues that
have an impact on small area statistics. Schaible (1996) provided an excellent account of the
use of indirect estimators in U.S. Federal Programs.
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Prompted by the growing demand for reliable small area statistics, several symposia
and workshops have been organized in recent years. Some of the symposia proceedings have
also been published, including the following: (1) National Institute on Drug Abuse, Princeton
Conference (National Institute on Drug Abuse, 1979); (2) International Symposium on Small
Area Statistics, Ottawa (see Platek et al. (1987) for the invited papers and Platek and Singh
(1986) for the contributed papers presented at the Symposium); (3) International Scientific
Conference on Small Area Statistics and Survey Designs, Warsawa, 1992 (Kalton, Kordos
and Platek, 1993); (4) International Association of Survey Statisticians Satellite Conference
on Small Area Estimation, Riga, 1999. The published proceedings listed above provide an
excellent collection of both theoretical and applied papers.

1.2 Terminology, notation

Terms used to denote a domain with small sample size include small area, small
domain, local area, subdomain, small subgroup, subprovince and minor domain. Examples of
a small geographical area include: county, school district, municipality, census tract. Even a
state can be classified as a small area if the state sample size is small. For example, with a
self-weighting sample of 7 =10,000 persons in U.S.A., the expected sample size for

Wyoming is only 18. Examples of a small subpopulation include: age-race-sex group within
a large geographic area, business firms belongs to a census division by industry group.

A direct estimator is based on data obtained only from the sample units in the area of
interest, i.e., it is area-specific. On the other hand, indirect estimators (also called
nontraditional, model-based) borrow strength from sample observations of related areas to
increase the effective sample size.

We use the following notation:

y = characteristic of interest, x = vector of auxiliary variables
Y = population total, N = population size

s = overall sample, n =size of s

Y, = i-th area total, N,= i-th area size

s, = i-th area specific sample, n,= size of s,

Y, =Y,/N, =i-th area mean, P, =i-th area proportion ( y = 1 or 0)

Further, w, denotes the basic design weight attached to the -th sample unit (k € s) , where s 1s
a probability sample. For example, w, = N/n for simple random sampling. The weight w,
may be interpreted as the number of units in the population represented by the sample unit .

12



1.3 Direct estimators

In practice, the weights w, are adjusted for post-stratification in order to increase the
precision of the estimator and to ensure consistency with known totals of auxiliary variables

x:(xl,...,xp)r, where the superscript 7' denotes the transpose of a vector. The adjusted

weights are given by wz =w,g,, where g, 1s the adjustment factor (also called g-weight),
and the corresponding estimator of the total Y is given by

}}:Zw;:yk; (1.1)

kes
that is, ¥ is the sum of weighted values wy, v, over the units & in the sample s .

Complete post-stratification

Suppose ; N denotes the known j -th poststratum (cell) count; for example, projected
census age-sex counts obtained from demographic methods. Then letting ;5 be the sample in

the j-th poststratum, g, is given by

where J»]\A/ is the sum of weights w, associated with units & belonging to ;5. The estimator
Y reduces to ;N when y, is the indicator variable taking the value 1 if the unit & belongs to

post-stratum j , and 0 otherwise; that is, ¥ ensures consistency with known totals ; N .

For the special case of complete post-stratification with g-weights given by (1.2), the
estimator (1.1) reduces to

Y=Y (,NI,N)7Y, (1.3)
~
where j); is the sum of weighted values w, y, of units & belonging to ;8-

Incomplete post-stratification

The numbers of cells increases rapidly if the post-strata are constructed by cross-
classifying several variables. To avoid this problem, it is a common practice to use only
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marginal counts for each variable. The weights WA are obtained by minimizing a chi-squared

. 2 . *
distance Z(w:—wk) /w, subject to Zwkxk,zX,, [ =1,..,p, whereX, denotes a

kes kes

marginal count. The solution is given by w,t =w,g, with

g =1ex THX =Y wixy), (1.4)
where T = Zwkxkxz and X = (X ,...,Xp)r (see, for example, Deville and Sarndal, 1992).

Area-specific estimators

A direct estimator of small area total Y, is given by

Y=Y Wiy (1.5)

kes,

Similarly, N,and Y, are estimated by

]Qi Z::Z:VV:> fi = i;/]Qi'

kes,

A~

The estimator of proportion P, is a special case of Y. with binary y. Note that Y, ensures

! 1 1

additivity, i.e., Zfl =Y . Note that 17, cannot be used if the sample s, is empty.
i
Mean squared error

Mean squared error(MSE ) is commonly used to measure the accuracy of the estimator

)?,.. It is given by

2
b

MSE(Y,)=V(Y))+ [B(ﬁ)]

14



where V denotes variance and B denotes the bias of the estimator. The bias of ¥ is

1

negligible for large sample sizes n, but the variance of Y, 1s of the order n,.’I so that the

precision of )}, is not adequate if the small area sample size n, is small.
Relative root mean square error (RRMSE) or coefficient of variation (CV) of an

estimator );, is defined as the square root of MSE of ¥, divided by the total ¥, and it is a

4

measure of reliability of the estimator. If the bias of Y is zero or negligible, then RRMSE =

RSE = relative standard error which is the square root of variance (or standard error (SE))
divided by the total ¥, . Advantage of RRMSE (or CV) is that it does not depend on the unit of

measurement. For small areas, RRMSE less than 20-25% is often regarded as adequate. In
practice, RRMSE is estimated from the sample.

1.4 Design issues

“Optimal” design of samples for use with direct estimators of large area totals received
a lot of attention over the past 50 years or so, but survey design issues that have an impact on
small area statistics should also be considered. Singh et al. (1994) proposed several methods
for use at the design stage to minimize the use of indirect small area estimators. These
methods include (i) replacing clusters by using list frames, (ii) use of many strata to provide
better sample size control at the small area level and (iii) compromise sample allocations.
They presented an excellent illustration of compromise sample size allocations to satisfy
reliability requirements at the provincial level as well as sub-provincial level. For the
Canadian Labour Force Survey with a monthly sample of 59,000 households, optimizing at
the provincial level yields a coefficient of variation (C¥) for “unemployed” as high as 17.7%
for some Unemployment Insurance (UI) regions. On the other hand, a two-step allocation
with 42,000 households allocated at the first step to get reliable provincial estimates and the
remaining 17,000 households allocated at the second step to produce best possible Ul region
estimates reduced the worst case of 17.7% CV for Ul to 9.4% at the expense of a small
increase in CV at the provincial and national levels: CV for Ontario increased from 2.8% to
3.4% and for Canada from 1.36% to 1.51%. Preventive measures, such as compromise
sample allocations, should be taken at the design stage, whenever possible, to ensure adequate
precision for domains like Ul region. Marker (1999) discussed several other methods for use
at the design stage, including the use of dual frames, combining data from rolling samples
(Kish, 1990) and harmonization (or integration of surveys).

Preventive measures at the design stage may reduce the need for indirect estimators
significantly, but for some small areas sample sizes may not be large enough for direct
estimators to provide adequate precision even after taking such measures. As noted before,
sometimes the survey is deliberately designed to oversample specific domains at the expense
of small samples or even no samples in other domains (areas) of interest.

15



2 TRADITIONAL INDIRECT ESTIMATORS

2.1 Demographic methods

As pointed out earlier, demographers have long been using a variety of methods for
local estimation of population and other characteristics of interest in post-censal years. These
methods, called Symptomatic Accounting techniques (SAT), utilize current “symptomatic”
data from administrative registers (such as the numbers of births and deaths) in conjunction
with related data from the latest census. We consider the following SAT methods : Vital Rates
(VR), Components and Regression Symptomatic.

VR method

The VR method uses only birth and death data as symptomatic variables.
Letb, (by)andd,(d,) denote the number of births and deaths for the local area for current
year f(census year 0), where b,,d, are obtained from administrative registers. The
population p, for the local area at year ¢ is then estimated by

. 1. b d

P ==+ 0 2.1)

2R, Iy

where 7,7, are the estimates of crude birth and death rates, r, =b,/p, and r,, =d, /p,, for

the current year ¢. The VR method assumes that the updating factors
¢, =n, [roand @, =ry, [ry, are equal to the corresponding factors for a larger area containing

the local area, i.e, ¢ = R,, /Ry, and¢, = R,, /Ry, , where R refers to the larger area for which

the population estimate 15, is ascertained from official sources. It now follows that

A = dino Py = Pat (2.2)

number of large area births (deaths) for the current year ¢. The VR method is simple but the
assumption on updating factors is often questionable.

Example : Govindarajulu (1999, ch.17) considered the estimation of population for a
small county in Kentucky, USA. We have b, =400, d, =350 and from the 1990 census

R,y =2%, Ry, =1.8%. He assumed Ry, =ryy, Ry =ry. The state rates are R, =2.1%
and R,, =1.9% so that ¢, =2.1/2 and ¢, =1.9/2. Also, from (2.2)

1007, =2(2.1/2)=2.1, 1007, = 1.8(1.9/1.8) =1.9.
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It now follows from (2.1) that

_1 400 | 350
2°0.021  0.019

b, )~ 18,735.

Components method

The components method takes account of net migration. Denoting b, ,d,, and m,, as

the number of births, deaths and net migration in local area during the period [0, 7], we have
P, =DPo+by, —dy, +mg,, (2.3)

where
my, =1y, =€y, +n,,

with iy,,e,, and n,, denoting immigration, emigration and net interstate migration.
Administrative records providee,,i,, andn,, where i,, 1s benchmarked to known

immigration figures at state level. The components method is basically designed for
population estimation of local areas.

Regression symptomatic procedures

Regression symptomatic procedures use multiple linear regression to estimate local
area populations utilizing symptomatic variables as independent variables in the regression
equation. Three such methods are the ratio correlation, difference correlation, and sample
regression (SR) methods. We focus on the sample regression method (Ericksen, 1974) since it
uses the current regression equation unlike the other two methods based on the past two
consecutive census years. Let

Y, = ( p./P )/ ( Pio/ Po) =change in the population proportion for local area i,
x; = (S,ﬂ / S )/ (s,}.o / S0 ): change in the j-th symptomatic variable s for local area i,

where S, (S ) are the values for the larger area containing the local area i. The predictor

variables x; are obtained from administrative registers(j =1,..., p).

~

The SR method assumes that Y, is linearly related to x,,...,x,,. Survey estimates Y,

of Y, are obtained for &k out of m local areas under consideration, and linear regression 1s
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then fitted to the data (f,,xi1 NS A 1,...,k) to get the regression coefficients ﬁo,ﬁl ,...,[)’p.

The sample regression estimators of Y, are obtained as

z = ﬁo +,élxi1 +...+ ﬁpxip, i=1...m 2.4)

The current counts p,, are then estimated as

Py =Y (pi/P)P, i=l...m, 2.5)

A

Note that the sample regression estimator (2.4) does not make use of the direct estimator Y,

1
for the sampled areas, unlike the model-based estimators studied in Part 3. As a result, it is
less efficient than the model-based estimator for the sampled areas.

2.2 Synthetic estimators

An estimator is called a synthetic estimator if a reliable direct estimator for a large
area, covering several small areas, is used to derive an indirect estimator for a small area
under the assumption that the small area have the same characteristics as the large area
(Gonzalez, 1973). U.S. National Center for Health Statistics (1968) pioneered in the use of
synthetic estimation for developing state estimates of disability and other health characterisics
from the National Health Interview Survey (NHS); sample sizes in many States were too
small to provide reliable State estimates.

We give several examples of synthetic estimation to illustrate the underlying implicit
models and the methods.

Example 1 : No sampling

Suppose the total Y for a large region covering small areas i is known from
administrative sources, as well as sizes N, and N . Then a synthetic estimator of the small

area total Y, 1s
Y,(8)=(N,/N)Y (2.6)
Implicit model : ¥, =Y =Y/N forall i.

The synthetic estimator (2.6) has no variance, but can be badly biased if the implicit model 1s
not valid.

18



Example 2 :

Suppose P, and P denote proportions in poverty for small area i and a large region

covering area i, and suppose a reliable direct estimator P of P is available. Then a synthetic

estimator of P, is

A A

P(S)=P @2.7)

]

Implicit model : P, = P forall i.

This model assumes homogeneity of area proportions F,.
The design bias of IE’,.(S) 1s

B|B(s)|=P-P.

i

Suppose we want to estimate a total ¥, = N,Y, and N, is known. If reliable direct estimators

Y and N are available, then a synthetic estimator of Y, is

Y,(S)=N,(¥/N) 2.8)

Implicit model : ¥, =Y forall i.
This model assumes homogeneity of area means ¥, .

The variances of synthetic estimators }A’,.(S ) and f’,(S ) are small because they are based on

the reliable direct estimators P,¥Y and N . But their biases can be large if the underlying
implicit homogeneity model is not satisfied.

Example 3 :

A more realistic model assumes homogeneity only within post-strata j (say age-sex-
race groups) for which domain specific post-strata counts ; N, are known :

Implicit model : 1.17,: j)7 forall i and each ;.

This model assumes that the post-stratum small area means Y, are homogeneous across i for

each post-stratum j and equal to the regional post-stratum mean ;Y .

19



If reliable direct estimates ,/Y and j]\A/ of the post-strata regional totals ;¥ and ;N
are available, then

75)=3 N7/, ) (2.9)
J

The synthetic estimators (2.9) add up to the reliable direct estimator Y given by (1.3).
If y=0orl, then a synthetic estimator of proportion P, is

IS"(S)Z[ZJNUPJ/(Z/‘N:}: (2.10)
J J

where | P is the direct estimator of the j -th poststratum regional proportion ;P
Again the variance of the synthetic estimators )},(S) and 13,.(S) is small because it is

based on regional estimators JY j13 and jN, but their bias may be significant if the

underlying implicit homogeneity model is not valid.
Application

The synthetic estimator (2.10) was used to produce state estimates of proportions for
certain health characteristics from the 1980 U.S. National Natality Survey (NNS) and the
1980 National Fetal Mortality Survey (NFMS). Twenty five post-strata (demographic cells)
were formed according to mother’s race (white and all others), mother’s age group (6 groups)
and live birth order (1, 1-2, 1-3, 2, 2+, 3, 3+, 4+).

In this application (Gonzalez et al, 1996), a state in U.S.A. is a small area. For
example, suppose i denotes Pennsylvania, y =1 if live birth is jaundiced and y=0

otherwise. The national estimates of percent jaundiced, jf’, were obtained from NSS for
each of the 25 demographic cells j. The number of hospital births in each cell ; N, (obtained

from the state vital registration data) is then multiplied by jf’ and summed over the cells j to

get the numerator of (2.10) as 33,806. Dividing 33,806 by the total hospital births

Z ;N =156,799 in Pennsylvania, the synthetic state estimate of percent jaundiced live
-
births in Pennsylvania, 1980 is given by (33,808/156,799)x100=21.6.
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Evaluation

Gonzalez et al. (1996) evaluated the accuracy of the synthetic estimator (2.10) for
selected health characteristics by comparing the NNS synthetic estimates to “true” state

values P, for five selected states in 1980. These five states covered a wide range in the

annual number of births: 15,000 to 160,000. The true state values were obtained from the state
vital registration system. The MSE of the synthetic estimator was estimated as (est. — true
value)®. Table 1 reports the estimated values of RRMSE for the direct and synthetic estimates
for the following characteristics: Low birth, prenatal care, Apgar score. Standard errors (SE)
of the NNS direct estimates were estimated using balanced repeated replication with 20
replicate half-samples (see Morganstein (1998) for an overview of replicating methods for
estimating standard errors).

It is clear from Table 1 that the synthetic estimates performed better than the direct
estimates, especially for the smaller states (e.g., Montana) with small numbers of sample
cases. The values of RRMSE ranged from 0.14 (Pennsylvania) to 0.62 (Montana) for the
direct estimator while those for the synthetic estimator ranged from 0.00 (Pennsylvania) to
0.24 (Indiana). The NCHS used maximum RRMSE of 25% as the standard for reliability of
estimates, and most of the synthetic estimates met this criterion for reliability, unlike the
direct estimates.

Table 1. RRMSE of Direct and Synthetic Estimates

Characteristic True % Direct est. Syn. est.
and State Est.(%) RRMSE(%) Est.(%) RRMSE(%)

Low birth:
Pennsylvania 6.5 6.6 15 6.5 0
Indiana 6.3 6.8 22 6.5 3
Tennessee 8.0 8.5 23 7.2 10
Kansas 5.8 6.8 36 6.4 10
Montana 5.6 9.2 71 6.3 13
Prenatal care:
Pennsylvania 3.9 4.3 21 4.3 10
Indiana 38 2.0 21 4.7 24
Tennessee 54 4.7 26 5.0 7
Kansas 34 2.1 35 4.5 32
Montana 3.7 3.0 62 43 16
Apgar score:
Pennsylvania 7.9 7.7 14 9.4 19
Indiana 10.9 9.5 16 94 14
Tennessee 9.6 7.3 18 9.7 1
Kansas 11.1 12.3 25 94 15
Montana 11.6 12.9 40 9.4 19
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MSE estimation

An estimator of MSE of the synthetic estimator 17,(5 ) is given by
~ A~ A2 A
mselt ()] =[F.($)-1,f ~v(d), @.11)

where v(ﬁ) is a customary variance estimator of the direct estimator );,.; for example a
variance estimator based on a replication method. The estimator (2.11) is approximately
unbiased but can be higly unstable. As a result, it is common practice to take the average of

the MSE estimators of the means );,.(S)/ N, over areas i and then multiply this average by

N} . This average MSE estimator will be stable but it is not an area-specific measure of
accuracy. Attempts have been made to provide area-specific measures of accuracy that are
more stable (Marker, 1993). One such estimator of MSE assumes that the squared bias of the
synthetic estimator is approximately equal to the average squared bias of the synthetic
estimators over areas 1.

Structure preserving estimation (SPREE)

We now describe the method of Structure Preserving Estimation (SPREE) for
categorical variables of interest y and categorical post-strata (auxiliary) variables (Purcell and
Kish, 1980). For example, the categories, a, of y denote employed/unemployed while the
categories, b, of an auxiliary variable denote white/nonwhite. The small area cell
counts {N,, }from the past census are assumed to be available and {M ,, }denote the

corresponding unknown current counts. Our interest is in estimating the small area counts
M, = ZM .ap Utilizing {N mb}as well as reliable direct survey estimates
b

iab

{M +ab }of {M +ab} and demographic projections {1\2 i }of population counts {M i+ +} , where +
denotes summation over the subscript. We consider two cases : (1) use only {Nmb} and

{Mmb }; (2) use {N,,} and both {A:[mb } and Q\;[H+ }
Casel:

SPREE adjusts {N, } to confirm to the “allocation” structure {M +ab }but preserving the

“allocation” structure in{N,, }as much as possible. This is accomplished by minimizing a

chisquared distance ZN,;},(x,ah ~ N )2 with respect to x,, subject to the conditions

iab

Zx,-ab =M+ab. The resulting solution is given by M,ab =(N,ab/N+ab)A;[+ab and the

estimator of M ,,, is therefore obtained as

+
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Mia Z Z lab/N+ab +ab (212)

b b

The estimators M, are also called one-step “raking ratio” estimators because of the ratio
form.

Case 2 :

SPREE adjusts {N,,, | to confirm to the “allocation” structure {/\;! Mb} and {A;[ ,++} but
preserving the association structure in{N,, } as much as possible. In this case we do not have
a closed-form solution {Az mb} unlike in case 1. Two-step raking ratio estimators {M ;b} are
obtained through iterative cycles, each cycle consisting of two steps. In the first cycle, we use

starting values xl(gg = N,,, and do one-step raking to agree with the column margins M +ap AS

in case 1 to etx(') We then do one-step raking usin x() to agree with the row margins
g iab - p g g iab g g

~

M,,, to get x( ) which are used as starting values for the second cycle. Iteration of cycles is

contmued until some convergence criterion is met. SPREE estimator of M,
*
= ZMiab
b

Evaluation

is given by

ia+

Purcell and Kish (1980) made an evaluation of one-step and two-step SPREE
estimators by comparing them to true counts, obtained from Vital Statistics registration
system. In this study, SPREE estimates of mortality due to each of four different causes (a)
and for each state (i) in U.S.A. were calculated for five individual years ranging over the post-

censal period 1960-70. Here the categories b denote 36 age-sex-race groups, { ,ab}the 1960
census counts and W vab =M o } {i\;[ e =M, } the known current counts.

Table 2 reports the percent absolute relative differences (ARD), where
ARD =|est. - truel / true . It is clear from Table 2 that the two-step SPREE estimator performs

significantly better than the one-step SPREE estimator (2.12). Thus it is important to
incorporate through the allocation structure the maximum available current data into SPREE
estimation.

Purcell and Kish (1980) also studied SPREE when the full association structure
{Nmb}is not available. For example if only {N ; +b} are known, SPREE estimators of M,

taken as Z(N s/ Nt )A;I +ab » aSSUMIng proportionality across the categories a.
b
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Table 2. Percent ARD of SPREE Estimates

Cause of death Year One-step Two-step
Malignant 1961 1.97 1.85
neoplasms 1964 3.50 2.21

1967 5.58 3.22
1970 8.18 2.75
Major CVR 1961 1.47 0.73
diseases 1964 1.98- 1.03
1967 3.47 1.20
1970 4.72 2.22
Suicides 1961 5.56 6.49
1964 8.98 8.64
1967 7.76 6.32
1970 13.42 8.52
Total 1961 1.92 1.39
other 1964 3.28 2.20
1967 4.89 3.36
1970 6.65 3.85

Griffiths (1996) used the one-step SPREE estimator (2.12) to provide estimates for
Congressional Districts (CD) in U.S.A. The survey counts {/\;[ +ab} were obtained from the

March CPS (Current Population Survey) which collects extensive information such as
household income and health insurance coverage in addition to labour force characteristics.
The CPS sample was not designed to provide reliable direct estimates at the CD level; the CD
sample sizes tend to be too small for direct estimation with desired reliability.

23 Composite estimators

Synthetic estimators are simple to implement in practice. But their bias can be quite
significant because they make too strong a use of information from other areas and as a result
allow too little for local variation. A simple way to balance the potential bias of a synthetic

estimator ﬁ(S )against the instability of a direct estimator };, is to take a weighted average of
the two estimators. This leads to a composite estimator of the form

7,(C)=¢7,+ (1=, )V,(5) (2.13)
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for some suitably chosen weight ¢, in the range [0,1]. Optimal weights ¢, that minimise the

MSE of the composite estimator can be obtained (Schaible, 1978), but the weights have to be
estimated from the sample data. The estimated weights, however, can be very unstable as

they involve the estimated MSE of ?I(S ), given by (2.11), which is highly unstable. To
overcome this difficulty, Purcell and Kish (1979) used a common weight, ¢, and then

minimized the average MSE over small areas. This leads to an estimated weight ;73 of the
form

¢3=1—zv<2>/z[ﬁ<s>—ﬁ]2, (2.14)

where v();,.) 1s the variance estimator of the direct estimator );, The common weight ¢3 will
be stable but the use of a common weight may not be reasonable if the individual variance
estimators v(ﬁ ) vary considerably.

Sample-size dependent estimators

Simple weights that depend only on the small area counts N, and N ; have also been
proposed (Drew, Singh and Chaudhry, 1982). The weights are given by

1 if N, > 3N,
#,(D)=1 . , (2.15)
N, /(éN,) otherwise,

where ¢ is a specified constant. The resulting composite estimator is called the sample-size
dependent (SSD) estimator. In the special case of SRS with design-weights w, = N/n and no
post-stratification, we have N ,=N(n,/n) and ¢,(D)=1if n, is not less than the expected
domain sample size n(N /N ), assuming 6 =1. Note that the SSD estimator reduces to the
direct estimator if the realized domain sample size #; is not less than the expected domain
sample size even when the latter is very small. In the latter case, the SSD estimator may not
be reliable because n; could be very small. One could remedy this problem to some extent by
choosing a suitable & larger than 1, but the choice of & is somewhat subjective. Moreover,
the same weight ¢, (D) is used for all characteristics y regardless of their differences with
respect to between area homogeneity.

The SSD estimator 1s used when the expected domain sample size is sufficiently large
for the direct estimator to be reliable and the realized sample size may fall short of the
expected sample size. The Canadian Labour Force Survey uses the SSD estimator with
0 =2/3 to produce Census Division (CD) level estimates.
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Evaluation

Falorsi, Falorsi and Russo (1994) compared the performance of direct estimator,
synthetic estimator, SSD estimator with & =1, and optimal composite estimator, through a
Monte Carlo study in which the Italian Labour Force Survey design (stratified two-stage
design) was simulated using data from the 1981 Italian census. The optimal weight ¢, was
obtained from the census data. In this study, Health Service Areas (HSAs) are the small areas
(unplanned domains) that cut across design strata. The study was confined to the 14 HSAs of
the Friuli region and the sample design was based on the selection of 39 primary sampling
units (PSUs) and 2,290 second stage units (SSUs); PSU is a municipality and SSU is a
household. The variable of interest, y, was the number of unemployed.

The performance of the estimators was evaluated in terms of absolute relative bias
(ARB) and RRMSE. The relative bias (RB) and MSE of an estimator of the total ¥; are given

by
est, 1,
Y’.
R

MSE =}1€Z(est, —Y.)2 s

1 R

and

r=1 ,
where est, is the value of the estimator for the r-th simulation run (r=1,..,R). Note the
RRMSE = (square root of MSE)/Y, and ARB = |RB|. They used R=400 simulation runs to
calculate RB and MSE for each HSA and each estimator.

Table 3 reports the average values ARBand RRMSE of the estimators, where the
average is over the 14 HSAs. It is clear from Table 3 that ARB values of the direct estimator
and SSD estimator are negligible (< 2.5%) while these of the composite and synthetic
estimators are somewhat larger. Synthetic estimator has the largest ARB (about 9%). In

terms of RRMSE, synthetic and composite estimator have the smallest values (about one half

of the value for the direct estimator) followed by the SSD estimator with apprximately 30%
higher value. ”

Falorsi et al. (1994) also examined area level values of ARB and RRMSE. Synthetic
and composite estimators were found to be badly biased in small areas with low values of the
ratio P = (population of HSA)/ (population of the set of strata including the HSA) but

exhibited low RRMSE compared to the other alternatives. Considering both bias and
efficiency, they concluded that the SSD estimator is preferable over the other estimators. It
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may be noted that the sampling rates were relatively high leading to large enough expected
domain sample sizes, a case favourable to the SSD estimator.

Table 3. Average Absolute Relative Bias (ARB%) and Average
RRMSE (RRMSE%) of Estimators

Estimator ARB % RRMSE %
Direct 1.75 42.08

Synthetic 8.97 23.80

Composite 6.00 23.57
SSD 2.39 31.08

James-Stein Estimators

James-Stein estimators belong to the class of composite estimators and the weights ¢,
are obtained under certain assumptions. Suppose the population area means Y, (or the
proportions P, ) are the parameters of interest and &, = g(?,' )or g(P)) for a specified function
g(). For example, g(a) =a orgla)= 1n{a/(1 —a)} which is used in the context of
proportions P,. Let éi = g()i’, )or g(]A’I) be the direct survey estimator of 6§, and assume that
the 9, are independent and normally distributed with means 6, and a common known variance

w . Then the James-Stein estimator of &, is given by

6.(JS) = 6,40, +(1—¢3JS)9,9,i =1,...m (2.16)
where
1= =[m-2y/S] m=3 2.17)

with § = Z(é, —6’,.0)2 and 67,-0 is a guess (or prediction) of &, (James and Stein, 1961). The

estimator (2.16) is also called a shrinkage estimator because it shrinks é’, towards the guess

¢°. The estimator of Y, (or B,) is given by g_l(éi).

27



If 6 :6',.0 for all areas i, then the total MSE of the JS-estimators equals 2y whereas

the total MSE of the direct estimators 9, equals my . This result clearly demonstrates the

potential for a drastic reduction of total MSE. A practical implication is that we can do much
better in terms of MSE for the group of small areas as a whole by using J-S estimators instead

of the direct estimators. The condition &, =6 is of course unrealistic but in practice one
might be able to get a prediction 49-0 close enough to & by using area-level auxiliary variables
(z,, ) linearly related to . For example, one could use the regression predictor

=Zﬂ .z, , Where ,8 ;s the ordinary least squares (OLS) estimator of regression coefficients
/

A

fs obtained by regressing 6, on z,,...z,, i=1,..,m. In the absence of auxiliary

information, 9,0 is taken as Zé, / m= é, . A fundamental result of James-Stein is that the J-S
i

estimator uniformly dominates the direct estimator in terms of total MSE no matter what the

choice of &’s is, provided A is fixed. If &° is not fixed, then the JS-estimator needs to be

modified to account for the estimation. For example, if 6 =4

[ 3]

then we change
m—2tom—23 in (2.17) and assume m > 4. It should be noted that the dominance property
for fixed 8 is not necessarily true for the retransform of 6, (JS). That is, the estimators
g™ lé, (Js )Jof Y,(or P,)may not dominate the direct estimators g™ (é’, ): }L’,(or f’,) in terms of
total MSE.

The J-S method may perform poorly in estimating those components ¢, with unusually

large or small values of 6, HO To reduce this undesirable effect, Efrom and Morris (1972)

proposed a comprise J-S estimator which offers a compromise between the J-S estimator and
the direct estimator. This estimator has both good ensemble and good individual propertles

unlike the J-S estimator. It is obtained simply by restricting the amount by which 91. (JS)

differs from @, to a multiple of the standard error of 0,:

6.(JS)  if O, —cly <6,(JS)<6, + ey
0 (JS)=16, —cly it 6,(JS)< 8, —c\ly (2.18)
é+c\/7 if 6,(Js)> 6, +c\/—

wherec > 0is a suitably chosen constant. The choice c¢=1 ensures that the MSE of

individual estimator 8, (JS) never exceeds twice the variance of the direct estimator, which
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retaining more than 80 percent of the reduction in total MSE of J-S estimators over the direct
estimators. The compromise J-S estimator of Y,(or P, ) is taken as g~ ’_0,* (JS)J.

Example:

Efron (1975) gave an amusing example of batting averages of major league baseball
players to illustrate the superiority of J-S estimators over the direct estimators. Table 4 gives
the batting averages of m =18 players after their first 45 times at bat during the 1970 season.

These estimates are taken as the direct estimates é, =13,. The J-S estimates (2.16) were

calculated using 9,0 = Zé/l8 =0.265= 13, and :13, (1 —13, )/45 =0.0043, the binomial

variance. The compromise J-S estimates (2.8) were calculated using ¢ =1. To compare the
total accuracy of the estimates, the batting average for each player i during the reminder of the

season (about 370 more at bats on average) was taken as the true ¢, = P,. Table 4 also reports
the values of J-S and compromise J-S estimates.

Since the true values @, are assumed to be known, we can compare the relative
A ~ v
accuracies using the ratios R, = Z(P, —P,.)Z/Z (Pi (JS)—P,) and
i i

R, = Z(P, ~—1’3,)2/Z(P,*(JS)—P,.)z . We have R; =3.50 so that the J-S estimates

outperform the direct estimates by a factor of 3.5. Also, R, =14.67 so that the compromise
J-S estimates perform even better than the J-S estimates in this example. It may be noted that
the compromise J-S estimator protects player 1’s proportion 13l =0.400 from overshrinking

toward the common proportion 13 =0.265.

MSE estimation

It 1s possible to obtain an estimator of MSE of the J-S estimator similar to (2.11) for
the synthetic estimator. But it is also highly unstable and one needs to resort to some sort of
averaging of MSE estimators as in the case of synthetic estimators. Model-based methods in
Part 4 do not suffer from these limitations. Morever, they permit validation of models from
sample data and extensions to handle complex situations.

Benchmarking

Composite estimators and model-based estimators in Part 4 do not necessarily add up
to the reliable direct estimator, Y, at a large area level. A simple way to ensure consistency
with ¥ is to use a ratio adjustment. Suppose Y (C) 1s a composite estimator of i-th area total,

1

then the ratio-adjusted estimator is given by
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7,(0)- 249y .18

G
Table 4. Batting Averages for 18 Baseball Players
Player Direct True J-S est. Compromise

est. Value J-S est.
1 0.400 0.346 0.293 0.334
2 0.378 0.298 0.289 0.312
3 0.356 0.276 0.284 0.290
4 0.333 0.221 0.279 0.279
5 0.311 0.273 0.275 0.275
6 0.311 0.270 0.275 0.275
7 0.289 0.263 0.270 0.270
8 0.267 0.210 0.265 0.265
9 0.244 0.269 0.261 0.261
10 0.244 0.230 0.261 0.261
11 0.222 0.264 0.256 0.256
12 0.222 0.256 0.256 0.256
13 0.222 0.304 0.256 0.256
14 0.222 0.264 0.256 0.256
15 0.222 0.226 0.256 0.256
16 0.200 0.285 0.251 0.251
17 0.178 0.319 0.247 0.243
18 0.156 0.200 0.242 0.221

The ratio-adjusted estimators (2.18) add upto the reliable direct estimator Y at the large area
level.
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3 MODEL-BASED ESTIMATORS

3.1 Basic area-level model

Model-based methods of small area estimation have received a lot of attention because
of the following advantages: (1) Model-based methods make specific allowance for local
variation through complex error structures in the models that link the small areas. Efficient
indirect estimators can be obtained under the assumed models. (2) Models can be validated
from the sample data. (3) Methods can handle complex cases such as cross-sectional and time
series data. (4) Stable area specific measures of variability associated with the estimates can
be obtained, unlike the overall measures for synthetic and composite estimators mentioned in
Part 2.

We introduce three model-based methods, empirical best linear unbiased prediction
(EBLUP), empirical Bayes (EB) and hierarchical Bayes (HB), using a basic area-level model
that uses area-level covariates. This model has two components: (a) The direct estimator

~

0 = g({’ ) for a specified function g ) is equal to the sum of the population value 8, = g(?,)

/

and the sampling error e,:

A

0,=0,+e, i=1,.m 3.1)

where the sampling errors e, are assumed to be independent across areas i with means 0 and

known variances y,. (b) A linking model that relates the .'s to area-level auxiliary variables

T . .
zZ, = (z,1 ,...,z,p) through a linear regression model:

1

0 =z,p +...+z,p,6p +v,,
. (32)

where the model errors v, are assumed to be independent with means 0 and a common
unknown variance ¢ and independent of e, and B 1s the p-vector of regression parameters
B> B, Combining the two components (3.1) and (3.2) we get a combined model

A

0 =z B+v, +e, (3.3)

which is of the form of a linear mixed effects models with fixed effects £ and random small
area effects v, . The parameter o is a measure of homogeneity of the areas after accounting
for the covariates z,. Note that the combined model involve both design-based random

variables e, and model-based random variables v, .
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In practice, sampling variances , are seldom known, but smoothing of direct
estimated variances 1, is often done to get stable estimates which are then treated as the true
.. Other methods of handling unknown sampling variances are discussed in section 3.3.
The assumption that the direct estimator é, is design-unbiased for 6, may not be valid if &, is
a nonlinear function and the area sample size #; is small. A more realistic sampling error

model assumes that the director estimator ﬁ of the total Y is design-unbiased (or

!

approximately so for large over-all sample size n); that is, )}, =Y +e with zero mean

sampling errors e, . But we cannot combine this sampling model with the linking model (3.2)

directly to produce a linear mixed combined model. As a result, standard results in linear
model theory do not apply, unlike in the case of the linear model (3.3).

The basic area level model (3.3) has been extended to handle correlated sampling
errors, spatial dependence of random small area effects, vectors of parameters 0,

(multivariate case), time series cross-sectional data and others. Part 4 of this monograph
presents some of these extensions.

3.2 EBLUP and EB methods

EBLUP, EB and HB methods have played a prominent role for model-based small
area estimation. EBLUP method is applicable for linear mixed models whereas EB and HB
methods are more generally valid. EBLUP estimators do not require distributional
assumptions on the random errors e, and v,, but normality is often assumed for MSE

estimation. Also, EBLUP and EB estimators are identical under normality and nearly equal to
the HB estimator, but measures of variability of the estimators may be different.

Estimators

A linear estimator, ZZ,@,, with fixed coefficients [, is called a linear unbiased
prediction (LUP) estimator of the realized value of 6, if the expectation of the deviation
Zl, é, — 6. with respect to the combined model (3.3) is zero. BLUP estimator of the realized

0. is the estimator with minimun MSE in the class of LUP estimators.

Appealing to general results for linear mixed models (see Prasad and Rao, 1990), the
BLUP estimator of the realized €, under the model (3.3) is given by

~

o, (O‘f): y,é, + (1 -7, )Z;"E(Gf ) (3.4)
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2

where 7y, :O'E/(O", +(//,) and E(O':) is the weighted least squares estimator of B with

. -1 . . A
weights (Gf + 1//,) obtained by regressing ¢, on z,:

ﬁ(fff):(Z%Z,Z}’)J[Z‘,%Z,y,) (3.5)

It is clear from (3.4) that the BLUP estimator is a weighted combination of the direct
estimator é, and the “regression synthetic” estimator zfﬁ(af) with weights », and 1-y,
respectively. The BLUP estimator gives more weight to é, when the sampling variance y, is
small (or o is large) and moves towards the regression synthetic estimator as y/, increases
(or o decreases). For the nonsampled areas, the BLUP estimator is given by the regression

synthetic estimator, using the covariates z, associated with those areas.

A measure of variability associated with the BLUP estimator is given by its
MSE = E(est.—0,)*. We have

MSE[QN, (Jf )} gl,(o? )+ gz,(af ) (3.6)

where

g.lo?)=rv, (3.7)

and

-1
gz,-(df):Gf(l—y,)223(27,-2#?] z,. (3.8)

The results (3.4) and (3..6) do not require distributional assumptions on the random errors v,

and e, .

2 2

The leading term gll(d\, ): v,w, 1s of order O(1) whereas gz,(o‘, ), due to estimating

B, is of lower order, O(nf1 ), for large number of sampled small areas, m. The leading term
shows that MSE of the BLUP estimator can be substantially smaller than the MSE of the
direct estimator under the assumed model (3.3) when y, is small or the model variance ol is

small relative to the sampling variance y,. The success of small area estimation, therefore,

[

largely depends on getting good auxiliary data 4z, ; that leads to a small model variance



relative to sampling variance. Of course, one should also make a thorough validation of the
assumed model.

> is unknown so we replace it by a suitable estimator

v

In practice the model variance o

A2

& to obtain a two-step or EBLUP estimator 5, = 5,(6‘7 ) The estimator of the small area

mean Y is then given by g~ (5,) A simple method of moments estimator of o] is given by

Gl = max(&f ,O), where

(m-p)a2 =30, -8 f - wh, (3.9)

-1
with h, =z/ zz' | z and B’ is the ordinary least squares (OLS) estimator of PB.
1 { 1771 1 y q

Alternatively, &, is obtained iteratively as a solution the following nonlinear equation (Fay

and Herriot, 1979):

a(o"?): Z[é, —Z;I.E(O'f )]2/(03 +l//,)= m-—p, (3.10)

1

where ﬁ(a:) is given by (3.5). The middle term in (3.10) is the weighted residual sum of
squares which is equated its expected value m-p. Note that m-p is the degrees of freedom
associated with the weighted residual sum of squares. We truncate the estimator &. to0asin
the case of (3.9) to get &, = max(&f,O). Note that if &2 =0 then the EBLUP estimator 5,
reduces to the regression synthetic estimator z,’ﬁ even for the sampled areas, where
ﬁzﬁ(é'f), the estimator obtained by substituting & for o in (3.5). The estimators

obtained from (3.9) or (3.10) do not require distributional assumptions on v, and e,. If

normality of the random errors v, and e, is assumed, then the marginal distribution of 6, is
normal with mean z'p and variance o +y,, and the é, ’s are independent. Using this
result, restricted maximum likelihood estimators (REML) of B and o can be obtained. The
REML estimators for linear mixed models remain asymptotically valid under deviations from
normality (Jiang, 1996). Therefore, the EBLUP estimator g’, using REML estimator of o is

also asymptotically valid (for large m) under deviations from nonnormality. We refer the
reader to Cressie (1992) for a good introduction to REML estimation in the context of census
undercount estimation.
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We now turn to empirical Bayes (EB) estimation, assuming normality of the random
errors v, and e, which implies that the joint distribution of (é,,@,) 1s bivariate normal with

means (ZZB,Z;’B), variances (af +1,//,,0'f) and correlation y,. Using the latter result, the

minimum MSE estimator of the realized &,, given by the conditional expectation of 8, given

6., E(6?, Ié, 8.0’ ), reduces to

0" B.02)=76+(1-7)2'B . (3.11)

This estimator, called Bayes estimator, is optimal among all estimators that are functions of
the data {H,,z, }; linearity or model-unbiasedness of the estimators is not required. The model

parameters B and o are replaced by REML estimators ﬁ and & to get an EB estimator:
QNI/;B _ 67,3(6,(5"2) (3.12)

The EB estimator is identical to the EBLUP estimator 67, under normality, but the EB

approach is applicable generally for any joint distribution of é, and 4,. It should be noted

that the EB approach is essentially frequentist, because it uses only the sampling model and
the linking model which can be validated from the data; no prior distributions on the model
parameters unlike in the HB approach considered in section 3.3.

Fay and Herroit (1979) recommended the use of a compromise EB estimator similar to
the compromise James-Stein estimator (2.18); that is, (i) use 8" if 6" lies in the interval
lé, — Y, ,éi + ey, J; (1) use é,. —cyy,; if 67,“3 1s less than é,. —cqly, , (11) use
6" +cfy, if 6. exceeds 0, +c\ly, .

Applications

We present three applications of the EBLUP(EB) estimators: (1) Estimation of per
capita income (PCI) for small places (population less than 1000) in U.S.A. (2) Estimation of
school-age children in poverty at the county level in U.S.A. (3) Estimation of net
undercoverage in the 1991 Canadian Census for 96 small areas defined by sex (2) x age (4) x
province (12) combinations.
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Application 3.1

The U.S. Census Bureau was required to provide the Treasury Department with the
PCI estimates and other statistics for state and local governments receiving funds under the
General Revenue Sharing Program. These statistics were then used by the Treasury
Department to determine allocations to the local government units (places) within the
different states by dividing the corresponding state allocations. Initially, the Census Bureau
determined the current estimates of PCI by multiplying the 1970 census estimates of PCI in
1969 (based on a 20 percent sample) by ratios of an administrative estimate of PCI in the
current year and a similarly derived estimate for 1969. But the sampling errors of the PCI
estimates turned out to be quite large for places having fewer than 500 persons in 1970:
RRMSE of about 13 percent for a place of 500 persons and 30 percent for a place with 100
persons. As a result, the Bureau initially decided to set aside the census estimates for these
small places and to substitute the corresponding county estimates in their place. But this
solution turned out to be unsatisfactory because the census sample estimates for many small
places differed significantly from the corresponding county estimates after accounting for
sampling errors. Using the EB method, Fay and Herriot (1979) proposed a better solution and
presented empirical evidence that the EB estimates have average error smaller than either the
census sample estimates or the county averages for small places. The EB estimate used by
them is a weighted average of the census sample estimate and a regression synthetic estimate
obtained by fitting a linear regression equation to the sample estimates of PCI using as
independent variables the associated county averages, tax-return data for 1969 and data on
housing from the 1970 census. The Fay-Herriot method was adopted by the Census Bureau in
1974 to form updated estimates of PCI for small places. This was the largest application of
EB methods in a U.S. Federal Statistical Program.

We now provide some details of the Fay-Herriot application. First, based on past
studies, the CV of the sample estimate, f’—, , of PCI was taken as 3.0/ ]V, for the i-th area,

where N, is the weighted sample count; Y and N . were available for almost all places. This

1

suggested the use of  logarithmic transformation, é, = ln(}%,), with
Var(é,)z [C V()? )T = 9/ N .=y, . Secondly, four separate regression models were evaluated
to determine a suitable combined model, treating the sampling variances , as known:
(1) z, =1, z, =logarithm of PCI for the county; p = 2,(2) z,,2,,25 = In (value of housing for
the place), z, = In(value of housing for the county); p = 4,(_3) 7y,2,,Z5 = In(average gross
income per exemption from the 1969 tax returns for the place), z, = In (average gross income

per exemption from the 1969 tax returns for the county); p =4, (4] 2,240 =6.

Fay and Herriot (1979) calculated the values of & for each of the four models using

the iterative method based on (3.10). The values of & provide a measure of the average fit
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of the regression models to the sample data, after allowing for sampling errors in é, s, A
value for & of 0.045 corresponds to y, = 9.0/200 = 0.045 for a place of size 200, and equal
weighting (;?, = %) of the direct estimate and the regression synthetic estimate. The resulting

MSE, based on the leading term g, (&f ): &7, ,is one-half of the sampling variance; that is,

the EB estimate for a place of 200 persons roughly has the same precision as the direct
estimate for a place of 400 persons.

Table 3.1 reports the values of & for the states with more than 500 small places (size

less than 500). It is clear from Table 3.1 that regressions involving either tax or housing data,
but especially those including both, are significantly better than the regression on the county
values alone; that is ;model 4 and to a lesser extent models 2 and 3 provide better fits to the

data than model 1. Note that the values of aAf for model 4 are much smaller than 0.045,
especially for North and South Dakota, Nebraska, Wisconsin and Iowa.

Table 3.1 Values of & for states with more than 500 small places

State Model
9] (2) 3) “4)

Illinois 0.036 0.032 0.019 0.017
[owa 0.029 0.011 0.017 0.000
Kansas 0.064 0.048 0.016 0.020
Minnesota 0.063 0.055 0.014 0.019
Missouri 0.061 0.033 0.034 0.017
Nebraska 0.065 0.041 0.019 0.000
North Dakota 0.072 0.081 0.020 0.004

South Dakota 0.138 0.138 0.014 *
Wisconsin 0.042 0.025 0.025 0.004

* Regression not fitted because of two few data points.

The compromise EB estimates were obtained from the EB estimates and transformed
back to the origin scale. The latter estimates were then subjected to a two-step raking to
ensure consistency with the following aggregate sample estimates: (i) For each of the classes
<500, 500-999 and >1000, the total estimated income for all places equals the direct estimate
at the state level; (ii) The total estimated income for all places in a county equals the direct
county estimate of total income.
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Table 3.2 Values of Percent Difference of Estimates from True Values

Special Direct EB County
Census area est. est. est.
Population less than 500

1 10.2 14.0 12.9
2 4.4 10.3 30.9
3 34.1 26.2 9.1
4 1.3 8.3 24.6
5 34.7 21.8 6.6
6 22.1 19.8 14.6
7 14.1 4.1 18.7
8 18.1 4.7 259
9 60.7 78.7 99.7
10 47.7 54.7 95.3
11 89.1 65.8 86.5
12 1.7 9.1 12.7
13 11.4 1.4 6.6
14 8.6 5.7 235
15 23.6 253 343
16 53.6 10.5 11.7
17 51.4 14.4 23.7

Average 28.6 22.0 31.6

Population between 500 and 999

1 36.5 28.0 36.0
2 8.5 4.1 9.3
3 7.4 2.7 7.7
4 13.6 16.9 13.6
5 253 16.3 25.8
6 332 34.1 32.9
7 9.2 7.2 9.9

Average 19.1 15.6 19.3
Evaluation

Fay and Herroit (1979) also made an evaluation study by comparing the estimates for
1972 to “true” values obtained from census of a random sample of places in 1973. Table 3.2

reports the values of percentage difference ﬂest. —true Value‘ / true value }x 100 for the special
census areas using direct, county and EB estimates, as well as the values of average
percentage difference. It is clear from Table 3.2 that the EB estimates exhibit smaller average

errors and a lower incidence of extreme errors than either the direct estimate or the county
estimate: 22% compared to 28.6% (for direct estimates) and 31.6% (for county estimates) for
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places with less than 500 persons; 15.6% compared to 19.1% (for direct estimates) and
19.3% (for county estimates) for places with population size between 500 and 999. The EB
estimates were consistently higher than the special census values, but missing income was not
imputed in the special census (unlike in the 1970 sample census) and therefore were subject to
a downward bias.

Application 3.2

The basic area-level model (3.3) has been used recently to produce model-based
current county estimates of poor school-age children in U.S.A. (National Research Council,
1998). Using these estimates, the U.S. Department of Education allocates over $7 billion of
general funds annually to counties, and then states distribute those funds among school
districts. In the past, funds were allocated on the basis of estimated counts from the previous
census sample counts, but the poverty counts have changed significantly overtime.

In this application, &, =1InY,, where Y, is the true poverty count of the i-th county

(small area), and Y, =3—year weighted average of poor school age children (under 18)

obtained from the March Income Supplement of the Current Population Survey (CPS). The
following area-level predictor variables, obtained from administrative records, were used in
fitting the linear regression model (3.3): z, =1, z, = In (number of child exemptions reported

by families in poverty on tax returns), z, =In(number of people receiving food stamps),
z, = In (estimated population under age 18), z = In (total number of child exemptions on tax
returns) and z, = In (number of poor school-age children from the previous census). Counties
with CPS sample but no prior school-age children (i.e., Y, = () were excluded due to the log

transformation (ln 0= —oo).

The difficulty with unknown sampling variances y, was handled by (i) using a model
of the same form as above for the census year 1990, for which reliable estimates 7, of
sampling variances y/,. are available and (i1) assuming the census model errors v,. follow the
same distribution as the current model errors v,; that is, normal with mean 0 and variance
o . Under assumption (ii) an estimate of ¢’ was obtained from the census data assuming
V7, =, and used in the current model, assuming w, = ¢ /n, , to get an estimate &, of o .

The resulting estimate i, = 5. /n, was treated as the true y, in calculating the EBLUP (EB)

estimate §,of 0,. The county totals Y, can then be estimated as )7, = exp(g, ), but a more
refined method based on the mean of lognormal distribution was used. The county estimates
were then raked to agree with model-based state estimates obtained from a state model; the

state estimates were ratio-adjusted to agree with the direct national estimate.
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Evaluations

Both internal and external evaluations were conducted for model choice and for
checking the validity of the model. In an internal evaluation the validity of the underlying
assumptions and features of the model are examined. On the other hand, in an external
cevaluation the estimates from a model are compared with “true” values that were not used in
the development of the model; internal evaluation of regression output precedes external
evaluation.

For internal evaluation, the following features were examined: (a) linearity of the
regression, (b) constancy of regression coefficients overtime, (c) choice of predictor variables,

(d) normality of standardized residuals 7, /s.e.(r,), where 7, = é, -z ﬁ’ is the residual and

s‘e.(r,) a function of & and y,, (e) homogeneity of the variances of standardized residuals,
(f) outliers. No significant departures from the assumed model were observed.

For external evaluations, models were fitted to the 1989 CPS estimates and predictor
variables and model estimates of county poverty counts for 1989 were then obtained
following the procedures outlined above; the 1989 county estimates obtained from the 1990
census were used to estimate the model variance. Table 3.3 reports the average percent

difference (Z‘esz‘, —true value‘.‘/true valueiJXIOO for three different county estimates by
treating the 1990 census estimates as true values: (1) Model estimates; (2) Stable shares
estimates: county shares within a state same as those in the 1980 census; (3) Stable rates
estimates: county ratios (poor/population) within a state same as those in the 1980 census.
Estimates (2) were obtained by benchmarking 1980 census poverty counts to state estimates
for 1990, while estimates (3) were obtained by multiplying 1980 census ratios by current
population estimates and then benchmarking to state estimates for 1990. Note that (2) and (3)

rely heavily on the 1980 census.

Table 3.3 Values of Average Percent Difference for Three Estimates

Estimate : Model Stable shares Stable rates

16.4 27.1 26.2

The 1990 census estimates that were used in the comparisons were ratio adjusted by a
common factor to make the census national estimate of poor school-age children equal the
1989 CPS national estimate. This was done to account for the CPS-census differences in
measurement of income and poverty. It is clear from Table 3.3 that the model estimates are
much better than the stable shares or stable rates estimates. Apart from the above overall
comparison, average percent differences for subgroups were also examined for various types
of subgroups. The latter analysis revealed that the use of z, = In (estimated population under

18) is better than using z; = In (estimated population under 21) as a predictor variable in the
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regression model eventhough the latter led to a slightly smaller overall average percent
difference: 15.4. The model using z, (called log number model (under 21)) did not perform

well in terms of average percent difference for counties with large numbers of people under
age 21 in group quarters.

Application 3.3

Dick (1995) used the basic area-level model (3.3) to estimate net undercoverage rates
in the 1991 Canadian Census. The objective here is to estimate 96 adjustment factors
0, =T /C, corresponding to sex (2) x age (4) x province (12) combinations, where 7, is the

true (unknown) count and C, is the census count in the i-th domain (area); the net

undercoverage rate in the i-th area is given by U, =1-@7'. Direct estimates 6, were
obtained from a post enumeration survey and the associated sampling variances iy, were
derived through smoothing of the estimated variances. In particular, the variance of estimated

~

number of missing person, M,, was assumed to be proportional to a power of the census
count and a linear regression equation was fitted to (log V(M/),logC,,i:I,...,m), where

I;(M,) is the estimated variances of M, . Using this relationship, the sampling variances were

calculated from Iny, =—6.13-0.28InC, and the resulting y, were treated as true y/,.

Explanatory (predictor) variables z for building the model were selected from a set of
42 variables by backward stepwise regression described in Draper and Smith (1981,
chapter6). Internal evaluation of the resulting combined model was then performed, by

analysing the standardized residuals r, :(5,"‘” -z/p )/ (&f +y, )E, where the EB estimator

67,”” was calculated from (3.12) using REML estimates of B of o and. No significant
departures from the assumed model were observed.

The EB adjustment factors 6" were converted to estimates of missing persons,

M 7 and these estimates were then subjected to two-step raking to ensure consistency with

[Pl

reliable direct estimates of marginal totals M ,, and M, where “p” denotes a province, ““a

denotes an age-sex group and M, =M The raked EB estimates M " were used as the

pa pa
final estimates. These estimates were further divided into single year of age estimates by
using simple synthetic estimation:

W)=k e, la)/c,)

where ¢ denotes a sub-age group and C’W(q) is the associated census count.
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MSE Estimation

An advantage of the model-based approach is that it permits stable, area-apecific
estimators of MSE, unlike the average measures used for synthetic and composite estimators.
MSE estimation under the model-based approach is highly technical, and we simply present
some key results here.

First, a “naive” estimator of MSE of EBLUP estimator 5, = 67,(6"2, ) can be obtained
from the formula (3.6) for the MSE of BLUP estimator 5,(&‘7) by substituting &. for o .

But this leads to significant underestimation of true MSE because the effect of estimating o]
is ignored. Prasad and Rao (1990) obtained a second-order correct (or approximately
unbiased) estimator of MSE of EBLUP estimator 67, , assuming normality of {v,} and {e,}.

For the simple moment estimator (3.9) of & , it is given by

mse(@) gl,( )+g,,( )+2g( ) (3.13)

where g,,ﬁ) and g, (G?) are as given in  (3.7) and (3.8) and

( ) l /(a +(//,)yl( f)w1th h(cl)=2m" Z(G +y,).

Lahiri and Rao (1995) showed that (3.13) is robust in the sense that it remains valid under
moderate nonnormality of {v,}. The estimator (3.13) depends on z, but not on the area-

specific direct estimator é, . An alternative estimator that depends on (é, , z,) through the least

squares residuals 7, =8, —z!B is given by

mseu(g) g,,( ‘7)+ gz,( )+ 2g4,( ,2,6'3), (3.14)

where

g4i(ri2’o-3):[l//i2/(o_3 +‘//i)4}rizh(0v2)'

Both (3.13) and (3.14) are approximately unbiased in the sense that their bias is of lower order
than m~', for large m.
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Recently, Jiang, Lahirt and Wan (1999) proposed a jackknife estimator of MSE which
is also approximately unbiased. An advantage of the jackknife method is that it permits
extension to more complex models such as logistic regression with random small area effects.

We write the EB estimator (3.12) of &, as

2
)

where @ = (ﬁ,a‘ ) denotes the model parameters B and o). The jackknife steps are then as
follows:
(i) Calculate §(/), the estimator of @ when /-th area data (é,,z,) 1s deleted. Let
UR R
(i1) Calculate

5
1 ~

wry, =2y [0 (1) -5 ]

/=1
(111) Calculate

P
i -

M]i = gl/(o’\-\?)_% [gll(&f([))_gh(&f)]

=1

(1v) Jackknife estimator of MSE is calculated as
lnse.,(g,./iﬁ):M,,wLMz,. (3.15)

Note that M , estimates MSE when ¢is known and M ,, estimates the extra variability in
MSE due to estimating the model parameters ¢ .

3.3 HB method

The hierarchical Bayes (HB) approach is straightforward, inferences are exact and
complex problems can be handled using recently developed Monte Carlo Markov Chain
(MCMC) methods, such as the Gibbs sampler. In the HB approach, the population values &,

as well as the model parameters ¢ = (ﬁ,af) are regarded as random, and a prior distribution
on the model parameters (also called hyperparameters) 1s specified. The inferences on &, s

are based on the marginal posterior distribution (conditional distribution of & given the data
{((;”z, )i = 1,...,/71}: f(@l‘é), where 0 is the vector of direct estimates 9, In particular, &, is

estimated by the posterior mean E(HI‘ é) and the variability of the estimate is measured by
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the posterior variance V(Q,’ 0 ), assuming squared error loss which corresponds to MSE in the

EBLUP or EB approach.

2
o, known

We first consider the case of known o and specify a prior distribution on B . If the

prior is proportional to a constant (called improper prior) and normality of v, and e, is

assumed, then the posterior mean E(H,{ 0 ,63) is identical to the BLUP estimator 5,(0\7)

given by (3.4). Further, the posterior variance V(Q,} é,crf) is identical to MSE of the BLUP

estimator given by (3.6). Therefore, if o’ is known, HB and EBLUP approaches lead to
identical inferences. The improper prior on P reflects absence of prior information on f .

o’ unknown

. 2 - . - . . bl
In practice, o is seldom known. We therefore assume a prior distribution on o and

prior independence of Band o . This leads to the marginal posterior distribution, f(af‘é )

However, an improper prior on o could lead to an improper posterior of &, s (Hobert and

2

Casella, 1996). To avoid this difficulty, the prior on 7, = is assumed to be a gamma

b-1

v

distribution with parameters a >0 and b >0, denoted by G(a,b): f(zr,) < exp(-az,)7

Small values of @ and b are chosen to reflect the absence of prior information on o; .

Using the marginal posterior f (o—f } 0 ), the HB estimator E (0,‘ é) 1s obtained as

o :E(@,[ é):jéﬂ(a?)f(af 6 lio? | (3.16)

We may write (3.16) as Eaf\o‘ [51 (O'f )], where E . denotes the expectation with respect to

the marginal posterior distribution f (Jf’é). Similarly, the posterior variance V(O,’ 0 ) 1s

obtained as

V@F): Egsm [g,,(o—f)Jr g2,<df)]+ nglo‘ [51 (Uf )] (.17)
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6).

No closed form expressions for the integrals (3.16) and (3.17) exist, but in this simple
case the integrals can be evaluated numerically using only one-dimensional numerical
integration. For complex models, high-dimensional integration is often involved and it
becomes necessary to use MCMC-type methods to overcome the computational difficulties.

where VUZP denotes the variance with respect to f (o"vz

It follows from (3.16) that g,HB is approximately equal to the EBLUP (EB) estimator
5,(&3‘), but (3.17) shows that ignoring the uncertainty about o and then using

g (6';")+ 2y (63 ) as a measure of variability can lead to significant overestimation because
the last term in (3.17) is positive.

Gibbs sampling

Gibbs sampling is a MCMC method that can be used to evaluate (3.16) and (3.17). To
implement Gibbs sampling we need the following Gibbs-conditional distributions:

@) [3|6 ,02,0 which is a p-variate normal with mean (Zz,.zf )_1 (Z z,&,) and
covariance matrix o’ (Z z,z] )—l.

(ii) Gil[i,crvz ,0 which is a univariate normal with mean 8° (ﬁ,o*f) given by (3.11)
and variance g, (O'f) =y.¥,.

(i) 7, = 02

B,0,6 which is a gamma with parameters @ = -12—2(8[. —z! )2 +a and

h="1b.

N3

The Gibbs algorithm is as follows: (a) Using starting values 8, =8©) and o2 = 20,
draw 9 from (i). (b) Draw 6%,i=1,..m from (ii) using p =B® and o? =?®. (c) Draw
o2® from (iii) using 6, =6 and B =p®. Steps (a), (b), and (c) complete one cycle.
Perform a large number of cycles, say t, called “burmn-in” period until convergence and then
treat {ﬁ () g 2lers ),61(”]),...,:9,3” ) j=1,..,J } as J simulated samples from the joint posterior
distribution of B,o?,8,,...,0
single long run as above. But parallel runs can be wasteful because initial “burn-in” periods
are discarded from each run. On the other hand, a single long run may leave a significant
portion of the space generated by the joint posterior distribution unexplored.

Alternative methods use multiple parallel runs instead of a

m*
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For the single long run, we may use 9,(0) = 5,” and Jf(o) = REML estimator of o
as starting values. For multiple parallel runs, we need multiple starting values.

Using the J simulated samples, the posterior mean and the posterior variance of 6, are
estimated as

0" <=0 == 38.()=8,0 619
and
v(o, é)ﬁZ[g,,(of““’% gz,(af"“’)]ﬁi[é(.f)—é(ﬁ . (3.19)

J )

For the basic area level model (3.3), all the Gibbs-conditional distributions (1), (i1) and
(iii) are in a closed-form and, therefore, samples can be generated directly. But, for more
complex models, some of the Gibbs-conditional distributions may not have closed form in
which case alternative algorithms, such as Metropolis-Hastings within Gibbs and adaptive
rejective sampling, are needed to draw samples from the joint posterior distribution. We refer
the reader to Brooks (1998) for an excellent overview of the MCMC methods. Software,
called BUGS (Bayesian Inference using Gibbs Sampling) and CODA (Convergence
Diagnostics) are readily available for implementing MCMC and convergence diagnostics.
(website: http://www.mrc-bsu.cam.ac.uk/bugs/welcome.html). BUGS can handle a wide
variety of models, using adaptive rejective sampling and Metropolis-Hastings within Gibbs.

Caution should be exercised in using MCMC methods and associated software. For
example, Hobert and Casella (1996) demonstrated that the Gibbs sampler could lead to
seemingly reasonable inferences about a nonexistant posterior distribution. This happens
when the posterior distribution is improper and yet all the Gibbs-conditional distributions are
proper. Another difficulty with MCMC is that the convergence diagnostics tools can fail to
detect the sort of convergence failure that they were designed to be identify (Cowles and
Carlin, 1996). Further difficulties include the choices of ¢ for the burn-in period, number of
simulated samples, J, and the starting values especially for multiple parallel runs.
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34 Basic unit-level model

A basic unit level population model assumes that the unit y-value v, » associated with
the unit j in the area 7 is related to unit-level auxiliary variables x, for which the area

population mean vector X, is assumed to be known. If y is a continous variable, we assume a
one-way nested error linear regression model

Y, = xlllﬁ +v,+e,,j=L. . N;i=1.m (3.20)

where the random small area effects v, have mean 0 and common variance o, and

indcpendently distributed. Further, the v, are independent of the residual errors e, which are
independently distributed with mean 0 and variance auaf for specified constants a,. The

parameters of interest are the totals ¥, or the means Y . To handle count or categorical y-

variables (for example, binary y-variable), generalized linear nested error regression models
are often used (see Part 4).

The sample data {y{/,xu,j =1,..,n,;i =1,...m} are assumed to obey the population

model. This means that the sample design is “ignorable” or selection bias is absent which is
satisfied, for example, for simple random sampling within areas. In general, the sample
indicator variables should be unrelated to Yy conditional on X, . Model-based estimators

for unit level models do not depend on the survey weights so that design-consistency as n,

increases is forsaken except when the weights are equal, as in the case of simple random
sampling within areas. The area-level model (3.3) is free of this limitation but assumes that

the sampling variances y, are known. The unit-level model is free of the latter assumption

and it is possible to incorporate survey weights using model-assisted estimators (Kott, 1990;
Prasad and Rao, 1999).

We assume, for simplicity, that the area sampling fractions n, /N, are negligible and
the error variances are equal, i.e., a, =1. Then the EBLUP (EB) estimator, )7,.58 , of the mean
Y, ~X/B +v, is a weighted average of the “survey regression” estimator ¥, +(X -X, )[ﬁ
and the regression synthetic estimator X, B with weights 7, and 1 -7, where (7,.x,) are the
sample means for area i, 7, = 5./ (&f +67/ n,) and B is the weighted least squares estimator
of B . The estimators of variance components o and o are obtained either by REML or
the method of fitting of constants. Note that as the small area sample size, n,, increases 7,
tends to 1 and the EB estimator approaches the survey regression estimator. For small », and

small & /(}f , the EB estimator gives more weight to the regression synthetic estimator.
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The leading term of the MSE of ¥” is given by 811(0303)=7, o} /n, ., where
o /n, is the MSE of the sample regression estimator and y, =0} /(O'f +o’/n). This
shows that considerable gain in efficiency over the sample regression estimator is achieved if
y, is small. Therefore, models with smaller 7, should be prefered, provided they provide

adequate fit in terms of residual analysis and other model diagnostics. This is similar to the
model choice in Application 3.1.

Prasad and Rao (1990) obtained a second-order correct (or approximately unbiased)
estimator of MSE of the EB estimator, assuming normality of {v,} and {e{/}. The jackknife

method outlined in Section 3.2 can also be used to estimate the MSE.
Application 3.4

Battese, Harter and Fuller (1988) applied the nested error regression model (3.20) to
estimate areas under corn and soybeans for each of 12 counties in North-Central lowa, using
farm-interview data in conjunction with LANDSAT satellite data. Each county was divided
into area segments, and the areas under corn and soybeans were ascertained for a sample of
segments by interviewing farm operators; the number of sample segments in a county ranged
from 1 to 5. Auxiliary data in the form of number of pixels (a term used for “picture
clements” of about 0.45 hectares) classified as corn and soybeans were also obtained for all
the area segments, including the sample segments, in each county using the LANDSAT
satellite readings. In this application, X, = (1,x|,/,x2“v )’ where x,, and x,, respectively

denote the number of pixels classified as com and the number of pixels classified as soybeans
in the j-th area segment of the i-th county, and y, denotes the number of hectares of corn (or

soybeans) in the j-th area segment of the i-th county. Further, the errors ¢, have a common
variance o, ,1.e.,a, =1.

Battese etal (1988) used the EBLUP estimates 3”7 of the means Y, and associated
second-order correct estimates of MSE, where Y, is taken as f, + B X, +B,X, and the

population means X, and X,, are known from the satellite readings for all the segments in

each county i. Table 3.3 reports the EB estimates of corn and standard errors (square root of
estimated MSEs) of the EB and the survey regression estimates.
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Table 3.3 EB Estimates with Standard Errors

County n 3 Standard errors
EB Survey regression
1 1 122.2 9.6 13.7
2 1 126.3 9.5 12.9
3 1 106.2 9.3 12.4
4 2 108.0 8.1 9.7
5 3 145.0 6.5 7.1
6 3 112.6 6.6 7.2
7 3 112.4 6.6 7.2
8 3 122.1 6.7 7.3
9 4 115.8 5.8 6.1
10 5 1243 53 5.7
11 5 106.3 5.2 5.5
12 5 143.6 5.7 6.1

The ratio of the standard error of the EB estimator to that of the survey regression
estimator decreases from about 0.97 to 0.77 as the number of sample area segments, #,,

decreases from 5 to 1. The reduction in standard error 1s considerable when n, <3.

The EB estimates were adjusted to agree with the survey regression estimate for the
entire area covering the 12 counties; the latter estimate has relatively small standard error.
This adjustment produced a very small increase in the standard error of the small area
estimates.

Battese etal. (1988) also reported some methods for validating the assumed model.
First, they introduced quadratic terms xlz,/ and xzzu into the model and tested the null

hypothesis that the coefficients of the quadratic terms are zero. The null hypothesis was not
rejected at the 5% level. Secondly, they tested the hypothesis that the error term v, and e, in

the nested error linear regression model are normally distributed, by using the fact that the
transformed residuals (yu —d,.)_/,.)—(xu‘ -aX, )Iﬁ with a, = l—[&f /(6'3 +n,6) )]7 are
independent normal with mean 0 and variance o under the null hypothesis. Th well-known

Shapiro-Wilk W statistic, applied to the transformed residuals, gave values of 0.985 and 0.957
for corn and soybeans respectively. Under the null hypothesis, the P-values (probabilities of
getting values less than those observed) equal 0.921 and 0.299, respectively. Therefore, there

is no reason to reject the hypothesis that the errors v, and e, in the nested error regression

model are normally distributed. A limitation of this test is that the transformation of residuals
may mask the effects of individual errors. To study the effect of individual units (i), we can

49



examine the standardized EBLUP residuals (yy. —XZON—V,>/0A‘L, where v, is the EBLUP

estimator of v,. If the model is valid, the standardized residuals are approximately
independent normal with mean 0 and variance 1. Residual plots of the standardized residuals
can reveal the effects of individual units. To check for the normality of the v,’s and to detect

outlier v, ’s, a normal probability plot of the EBLUP estimates may be examined.

3.5 Simulation Study

Rao and Choudhry (1995) studied the relative performances of some direct and
indirect estimators using real and synthetic populations. For the real population, a sample of
1678 unincorporated tax filers (units) from the province of Nova Scotia, divided into 18
census divisions, was treated as the overall population. In each census division, units were
further classified into four mutually exclusive industry groups. The objective was to estimate
total wages and salaries (Y,) for each nonempty census division by industry group (small
areas of interest). We focus on the industry group “construction” with 496 units and average
small area size = 27.5. Gross business income, available for all the units, was used as an

auxiliary variable (x); overall correlation coefficient between y and x for construction equals
0.64

To make comparisons between estimators under customary repeated sampling, R =
500 samples, each of size n = 149, from the overall population of N = 1678 units were
selected by simple random sampling. From each sample, the following estimators were
calculated: (1) Post-stratified estimator (PST):N,y, ifn, 21;=0 if n, =0, where N, and n,

are the population and sample sizes in the i-th area (», is a random variable). (i1) Ratio
synthetic estimator (SYN):(?/E)X ,,» where y and x are the overall sample means in the
industry group and X, is the x — total for the i-th area. (iii) Sample size dependent estimator
(SSD): (2.15) with 6 =1. (iv) EBLUP estimator using the nested error regression model
(3.15) with XZB =px, and q, = xj To examine the aptness of this model, the model was
fitted to the 496 population pairs (yu.,x,j) from the construction group and the standardized
EBLUP residuals (y//. — Exu -V, )/ (o"'cfo were examined. A plot of these residuals against
x, indicated a reasonable but not good fit in the sense that the plot revealed an upper shift

with several values larger than 1.0 but none below -1.0. Several variations of the model,
including a model with an intercept item, did not lead to better fits.

For each estimator and industrry group, the values of average absolute relative bias

(ARB), the average ralative efficiency (ARE) and the average absolute relative error (ARE )
were calculated:
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m

ARG =13,

i=1

500
=5 (est, /Y, —1*
r=1

EFF = {MSE(PST)/MSE(est)}

est, 1,
Y,
where the average is taken over m=18 census divisions in the industry group (m=16 for

accommodation). Here est; denotes the values of the estimator for the #-th simulated sample
(r=1,2,...,500), Y, is the true small area total and

m 500
TE=i53,
T m 500

i=1 r=1

m 500
MSE(est) = #ZS‘W (est, -Y, )2 ;

i=l r=1

MSE (PST ) is obtained by changing est, to POST,, the value of the post-stratified estimator

for the r-th simulated sample. Note that ARB measures the bias of an estimator while ARE
and EFF both measure the accuracy of the estimator.

Table 3.4 reports the percent values of ARB, EFF and ARE for the construction
group. It is clear from Table 3.4 that SYN and EBLUP perform significantly better than PST
and SSD in

Table 3.4 Comparison of Estimators: Construction

Estimator
Measure PST SYN SSD EBLUP
ARB% 5.4 15.7 2.9 11.3
EFF% 100.0 232.8 137.6 261.1
ARE% 322 16.5 24.0 13.5

terms of EFF and ARE, leading to larger EFF values and smaller ARE values; for
example, EFF for EBLUP is 266.1% compared to 137.6% for SSD. In terms of ARB, SYN
has the largest value (15 7%) as expected followed by the EBLUP estimator with ARB=
11.3; PST has smaller ARB (5.4%). Overall, EBLUP is somewhat better than SYN (EFF

value of 261.1% versus 232.8% and ARE value of 13.5 % versus 16. 5%). Itis gratifying that
EBLUP under the assumed model performed well despite the not so good fit.
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Rao and Choudhry (1995) also compared the estimators using a synthetic population
generated from the assumed model with the real population x-values; the parameter values
used were the estimates obtained by fitting the model to the real population pairs

(y,j ,x,j): p =021, 0'3 =1.58 and af =1.34. As expected, EBLUP and SYN performed even
better because the synthetic population was generated from the assumed model; a plot of the
standardized EBLUP residuals obtained by fitting the model to the synthetic population
showed an excellent fit as expected. Rao and Choudhry (1995) also made conditional
comparisons of the estimators by conditioning on the realized sample sizes in the small areas.
This is a more realistic approach because the domain sample sizes, n,, are random with
known distributions. To make conditional comparisons under repeated sampling, they first
selected a simple random sample of size #n =419 to determine the sample sizes, n,, in the

small areas. Treating n, as fixed, 500 stratified random samples were then selected treating

the small areas as strata, and the conditional values of 4ARB, EFF and ARE were computed.
The conditional performances were similar to unconditional performances, but different when
two separate values for each measure were computed by averaging first over areas with

n, <6 only and then over areas with n, 26; EFF (ARE ) for EBLUP much larger (smaller)
than the value for SSD when the domain sample sizes is small (<6). Rao and Choudhry

(1995) also demonstrated that the SSD does not take advantage of the between area
homogeneity, unlike EBLUP. They generated a series of synthetic populations using the

previous  parameter values B =02l,6) =1.58ando, =1.34 and the model
Yy =P+ v,¢9% + e!.,xj by varying the parameter 6 from 0.1 to 10 (€ =1 corresponds to the

previous synthetic population). Note that for a given ratio ol /0'2 , the between area

homogeneity increases as @ decreases. Table 3.5 reports the unconditional values of EFF
and ARE for the estimators SSD and EBLUP, as @ varies from 0.1 to 10. It is clear from

Table 3.5 that EFF and ARE for SSD remain essentially unchanged as € increases from 0.1
to 10.

On the other hand, EFF for EBLUP is largest when 8 =0.1 (i.e., when the between area is
very small relative to the within-area variation) and decreases as € increase to 10 (i.e., when

the between area variation is large relative to the within-area variation). Similary, ARE for
EBLUP is the smallest when 6 = 0.1 and increases as @ increase to 10.
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Table 3.5 Comparison of Estimators: Synthetic Population

Estimator @ -value
0.1 0.5 1.0 2.0 5.0 10.0
EFF%
SSD 136.0 136.0 135.8 135.6 134.7 133.1
EBLUP 3243 324.6 319.1 305.0 270.8 2399
ARE%
SSD 25.6 25.7 25.9 26.3 27.2 28.2
EBLUP 11.5 11.6 11.8 12.5 14.5 16.7
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4 EXTENSIONS

Various extensions of the basic area-level and unit-level models have been studied in
the literature. We provide brief account of some recent extensions.

4.1 Area-level models

Extensions of the basic area level model (3.3) include multivariate and time series
models and models for disease mapping.

Multivariate models

Datta et al (1996) studied multivariate area level models with a vector of parameters

T . .
0, 2(9,.1,@2,@3) , where 8,,6, and 8, denote the true median incomes of four-, three-, and
five-person families in U.S. state (small area) i, and 6,’s are the parameters of interest;

estimates of €, were used for administering an energy assistance program to low-income
families. Adjusted census median income and base-year census median income for the three

groups were used as explanatory variables. Direct survey estimates 0, of 0, and associated
sampling covariance matrix were obtained from the Current Population Survey. HB estimates
of 8,’s, denoted by HB?, were obtained from the trivariate model and compared to the direct

estimates and univariate and bivariate HB estimates, HB' and HB?, treating the 1979
estimates, available from the 1980 census data, as true values. In terms of absolute relative

error averaged over the states (ARE ) the three HB estimates performed 81m11arly,
outperforming the direct estimates. In this application, the univariate estimates HB' worked

well in terms of ARE and, therefore, it is not necessary to use more complicated estimates
based on multivariate models; see Table 4.1 where HB* and HB? refer to bivariate models

with 8, =(6,,6,)" and 0, =(6,,6; ) respectively.

Table 4.1 Average Absolute Relative Error (%)

HB' HB* HB? HB?

2.07 2.04 2.06 2.02

In terms of standard errors (square root of posterior variances), HB? obtained from the

bivariate model with 0, = (9,] .0, )T performed better than the other HB estimates.
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Time series models

Suppose 8, denotes a parameter of interest for small area i at time ¢ and 6, is a direct

< A A\
estimator of ,. A sampling model assumes that the vector 0, :(@,,...,QT) , given 6,’s,
has a multivariate normal distribution with mean 0, 2(91.,,...,9,7) and known covariance

matrix ,, where T is the current time period. A linking model assumes
,
0, =xp+v, +u,, 4.1)

. . . 2
where v, ’s are independent normal with common mean 0 and common variance o, and u,
follows either a first order autoregressive model, u, = pu,,_, +¢,, |p’<l (Rao and Yu,

1994) or a random walk model u, =u,, , +¢, (Datta, Lahiri and Maiti, 1999) where ¢,s are

ig-1
independent of v,’s and normal with mean 0 and common variance . Linking models of
the form (4.1) have been iextensively studied in the econometric literature.

Datta, Lahiri and Maiti (1999) used EB estimators to estimate median income of four-
person families by U.S. states, using time series and cross-sectional data {é X } They

employed the linking model (4.1) with a random walk model on the u,’s. Using the 1979

estimates available from the 1980 census data as the true values, they compared the EB
(EBLUP) estimates with the HB estimates and CPS direct estimates. The EB estimates were
obtained using REML estimates of model parameters. In terms of absolute relative error,
avarged over the states, EB performed better than HB and both EB and HB performed nuch
better than the direct estimates. Table 4.2 gives the distribution of coefficient of variation
(CV) over the states for the three estimates. It is clear from Table 4.2, that in terms of
coefficient of variation, EB again performs better than HB and direct estimates.

Table 4.2 Distribution of coefficient of variation (%)

C.V.
Est. 2-4% 4-6% > 6%
CPS 6 7 38
HB 10 37 4
EB 49 2 0
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Disease mapping

Area local models have also been used in the context of disease mapping or estimating
regional mortality and disease rates. A simple model assumes that (i) the observed small area

counts y,, given the true incidence rate A, are independent Poisson variables with

parameters n,A,, where n, is the number exposed in area i; (i) The true rates A, are

17702

independent and identically distributed as gamma variables G(a,b) . Maiti (1998) used
B, =In@, and assumed that f,’s independent and identically distributed as normal with

mean 4 and common variance o . He also considered a spatial dependence model for f,’s,

using conditional autoregression (CAR) that relates each /3, to a set of neighborhood areas of

arca i. He used the HB method to estimate the lip cancer incidence in Scottland for each of 56
counties. The HB estimates of A,’s were very similar for the two models, but the standard

errors (square root of posterior variances) were smaller under the spatial dependence model.

4.2 Unit-level models

Extensions of the basic uni-level model (3.20) include two-level, multivariate and
logistic linear mixed models.

Two-level models

Moura and Holt (1999) generalized the basic unit-level model by allowing some or all
of the regression coefficients to be random and to depend on area level auxiliary variables,
thus effectively integrating the use of unit level and area level covariates into a single model.
They obtained EBLUP estimators and associated second-order correct estimators of MSE.
They applied the results to data from a sample of 951 retail stores in southern Brazil classified
into 73 small areas. Comparison of standard errors with those under the nested error
regression model demonstrated improved efficiency from two-level models. You and Rao
(1999) applied HB methods to the Brazilian data under three different two-level models: (1)
equal error variances as in Moura and Holt (1999), (2) random error variances, (3) unequal
error variances. Bayesian diagnostics revealed that model (3) fits the data better than models
(1) and (2).

Multivariate models

Datta, Day and Basawa (1999) extended the basic unit-level model to the multivariate
case with vector responses (}’1 i/,...,yqu). This extension leads to a multivariate nested error
regression model. They conducted a simulation study using the sample sizes and auxiliary

variable values given in Application 3.4 (Battese, Harter and Fuller, 1988). Further, they
estimated the model parameters for the multivariate model using the actual data

, l < hef . ares of
{)/w s V2y» X1y Xy, §» Where x, and x,, are as before and y,, (yz,/ )— number of hectares of corn
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(soybeans) in the j-th area segment of the i-th county. Treating the estimated parameters as
true values, they simulated samples from the model and showed that the multivariate
approach can achieve substantial improvement over the univariate approach in terms of
efficiency.

Logistic linear mixed models

Logistic linear mixed models have been extensively used for the case of binary
response 3, (0 or 1). The sampling model assumes that y, ’s, for given 6,’s, are

independent Bernoulli variables with parameters ¢,. The linking model i1s a logistic

regression model {QU./(I -0, )}: X/

; +v; with v,’s independent and identically distributed as

normal with mean 0 and common variance o . Jiang, Lahiri and Wan (1999) obtained EB

estimators and associated jackknife standard errors by the method outlined in Section 3.2.
Malec et al (1997) used the HB approach to estimate proportions for demographic groups
within U.S. states, using data from the National Health Interviews Survey. For one of the
binary variables observed for respondents to the 1990 census long form, they compared the
estimates from alternative methods and models with the very accurate census estimates of true
values.
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S CONCLUSIONS

We briefly discussed, in section 1.4, survey design issues that have an impact on small
area statistics. Preventive measures, such as those outlined in section 1.4, may reduce the
need for indirect estimates significantly. But, for many applications sample sizes in some
domains of interest may not be large enough to provide adequate precision even after taking
such measures. As noted in section 1, sometimes the survey is deliberately designed to
oversample specific domains at the expense of small samples or even no samples in other
domains (or areas) of interest.

We have provided a brief account of model-based small area estimation. The
methodological developments and applications are both impressive, but it i1s necessary to
exercise caution in using model-based methods because of the underlying assumptions. Good
auxiliary information related to the variables of interest plays a vital role in model-based
inference. As noted by Schaible (1996), expanded access to auxiliary information through
coordination and cooperation among federal agencies is needed.

Model validation also plays an important role in model-based estimation. We have
presented some methods for model validation in Part 3 and illustrated their application, but
the available methods for handling models with random effects are not as extensive as those
used for the standard regression models with only fixed effects. More work on model
diagnostics for random effects models is needed.

Area-level models have wider scope than the unit-level models because area-level
auxiliary information is more readily available than unit-level auxiliary data. But the
assumption of known sampling variances, y,, is quite restrictive, although the methods used

in the applications (section 3.2) seem to be promising. It should be noted that errors in
estimating , do not affect the model-unbiasedness of EBLUP (EB) estimators provided the

mean of 6, in the linking model (3.2) is correctly specified. But the efficiency of the

estimators is affected as well as the validity of the MSE estimators. More work on obtaining
good approximations to the sampling variances is needed. This task becomes more difficult
when using multivariate and time series area-level models because sampling covariances are
also needed.

The hierarchical Bayes (HB) approach is a powerful method for small area estimation
because it can handle complex problems and the inferences are “exact”. But, as noted in
section 3.3, caution should be exercised in the choice of improper priors on the model
parameters.

We focussed on indirect estimation of small area totals or means, but such estimators
may not be suitable if the objectives is to identify domains (or areas) with extreme population
values or to rank domaine or to identify domains that fall below or above some prespecified
level. Ghosh and Rao (1994) reviewed some methods for handling the latter cases.

58



Finally, we should emphasise the need for developing an overall program that covers
issues relating to sample design and data development, organization and dissemination, in
addition to those pertaining to methods of estimation for small areas.
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