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Introduction
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Welcome to this course

with the title :

Calibration of Weights in Surveys 
with Nonresponse 

and Frame Imperfections

The title of the course
suggests two objectives :

• To study calibration as a general method for 
estimation in surveys; this approach has 
attracted considerable attention in recent years

• A focus on problems caused by nonresponse :     
bias in the estimates, and how to reduce it
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Key concepts

Finite population U :  

N objects (elements) : persons,        
or farms,  or business firms, or  …

Sample s : 
A subset of the elements in  U  :   s ⊂ U

Sampling design : 
How to select a  sample   s from   U

or, more precisely, from the list
of the elements in U (the frame population)

Key concepts

Probability sampling : 
Every element in the population has

a non-zero probability 
of being selected for the sample

In this course we assume that
probability sampling is used.
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There is a well-defined survey objective .
For ex., information needed about employment :

How many unemployed persons are there 
in the population?

Study variable :  y
with value  yk = 1   if  k unemployed

yk = 0  if  k not unemployed

‘Unemployed’ is a well-defined concept (ILO)
Number of unemployed to be estimated :

∑∑∑ ==
∈=
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k
N

k
k yyy
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Key concepts

A survey often has                                           
many study variables  (y-variables) .

• Categorical study variables:
Frequently in surveys of individuals and    
households  (number of persons by category)

• Continuous study variables :
Frequently in business surveys (monetary 
amounts)
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Key concepts

There may exist other variables whose values are 
known and can be used to improve the estimation.  
They are called  auxiliary variables.

Calibration is a systematic approach to the use of 
auxiliary information. 

Key concepts

Auxiliary variables play an important role
• in the sampling design (e.g., stratification)
• in the estimation (by calibration)

In this course we discuss only how aux.     
information is used in the estimation.
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Ideal survey conditions : 
• The only error is sampling error.
• All units selected for the sample 

provide the desired information 
(no nonresponse)

• They respond correctly and truthfully 
(no measurement error)

• The frame population agrees with 
the target population 
(no frame imperfections)                                  

Key concepts

This course

Ideal conditions :
They do not exist in the real world..                   

But they are a starting point for theory.

Session 1_4  of this course discuss uses of  aux. 
information under ideal conditions.

Objective : Unbiased estimation; small variance.



7

This course

Nonresponse (abbreviated  NR) :
All of those selected for the sample 
do not response, or they respond to
part of the questionnaire only

A troubling feature of surveys today: 
NR rates are very high.
‘Classical survey theory’ did not need 
to pay much attention to  NR.

This course

Most of this course  - Sessions 1_5  to  2_6  -
is devoted to the situation :

sampling error and  NR error

Objective : 
Describe approaches to estimation ;

Reduce as much as possible 
both  bias (due to  NR) and variance
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This course

In the concluding Session  2_7  we add another 
complication :

Frame imperfections :  The target population is 
not identical to the frame population

Not discussed in the course:
Measurement error :   Some of the answers 

provided are wrong

Research on  NR in recent years  

Two directions :

Preventing NR from occurring (methods from 
behavioural sciences)   - We do not discuss this 

Dealing with (‘adjusting for’) NR once it has 
occurred (mathematical and statistical sciences) ;  
the subject of this course.
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Categories  of  NR

• Item NR : The selected element responds to some 
but not all questions on the questionnaire

• Unit NR : The selected element does not respond 
at all ;  among the reasons :  

refusal,  not-at-home,  and others

• NR is a normal, but undesirable feature of 
essentially all sample surveys today

• NR causes bias in the estimates 
• We must still make the best possible estimates
• Bias is never completely eliminated, but we 

strive to reduce it as far as possible 
• Small variance no consolation, because 

(bias)2 can be the dominating part of MSE

Basic considerations for this course
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Why is NR such a serious problem ?

The intuitive understanding : Those who happen to 
respond are often not ‘representative’ for the 
population for which we wish to make inferences 
(estimates). 

The result is bias  :  Data on the study variable(s) 
available only for those who respond. The 
estimates computed on these data are often 
systematically wrong (biased), but we cannot 
(completely) eliminate that bias.

Consequences of  NR

• (bias)2 can be the larger part of  MSE

• NR  increases survey cost;  follow-up is expensive

• NR will increase the variance, because fewer than 
desired will respond. But this can be compensated by 
anticipating the NR rate and allowing ‘extra sample 
size’

• Increased variance often a minor problem, 
compared with the bias. 
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• NR may be treated by imputation
primarily the item NR ;   

not discussed in this course .

• NR may be treated by (adjustment) weighting
primarily the unit NR ;

it is the main topic in this course

Treatment of  NR

Neither type of treatment will resolve 
the real problem, which is bias

• Adjustment methods never completely 
eliminate the NR bias for a given study 
variable. This holds for the methods in this 
course, and for any other method

• NR bias may be small for some of the usually 
many study variables, but large for others;   
unfortunately, we have no way of knowing

Starting points
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Comments,  questions

• The course is theoretical, but has a very 
practical background

• Different countries have very different 
conditions for sampling design and estimation. 
The Scandinavian countries have access to 
many kinds of registers, providing extensive 
sources of auxiliary data. 

• We are curious : What are the survey 
conditions in your country ?

• What do you consider to be ‘high NR’ in your 
country?

Literature on nonresponse

• little was said in early books on survey
sampling (Cochran and other books from 
the 1950’s) 

• in recent years, a large body of literature ,   
many conferences

• several statistical agencies have paid
considerable attention to the problem
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• S. Lundström,  Ph.D.  thesis,              Stockholm 
Univ. (1997)
• Lundström & Särndal : Current Best Methods

manual,  Statistics Sweden  (2002)
http://www.scb.se/statistik/_publikationer/OV9999_2000I02_BR_X97%c3%96P0103.pdf.

• Särndal & Lundström: Estimation in 
Surveys with Nonresponse. New York: 
Wiley   (2005). The course is structured on 
this book.

Our background and experience                    
for work on NR methodology

Särndal & Lundström (2008):  Assessing 
auxiliary vectors for control of nonresponse bias 
in the calibration estimator. Journal of Official 
Statistics, 24, 251-260

Särndal & Lundström (2009): Design for 
estimation: Identifying auxiliary vectors to 
reduce nonresponse bias.  Submitted for
publication

Our background



14

Important earlier works 

Olkin, Madow and Rubin (editors):          
Incomplete data in sample surveys.                 
New York: Academic Press (1983)     (3 volumes)

Groves, Dillman, Eltinge and Little (editors): 
Survey Nonresponse.                                        
New York:  Wiley (2001)

These books examine NR from many 
different perspectives.

The nature of NR is sometimes described
by terms such as 

ignorable,  MAR,  MCAR, 
non-ignorable

These distinctions not needed in this course

A comment
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1_2
Introductory aspects of the 

course material

The process usually starts with a general, 
sometimes rather vague description of a 
problem (a need for information)

The statistician must determine
the survey objective as clearly as possible:

• What exactly is the problem? 

• Exactly what information is wanted?

Planning a survey
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• An experminent ?

• A survey ? 

• Other ?

Types of fact finding

Options :

• the finite population and the 
subpopulations (domains) for which
information is required

• the variables to be measured and 
the parameters to be estimated

The statistician’s formulation

must specify :
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The target population (U)

Domain

∑= U kyY
∑= qU kq yY Qq ,...,1=

Parameters:

where

),...,,...,( 1 Mm YYYf=ψ

)( qU

Aspects of the survey design that need to be 
considered :

• Data collection method

• Questionnaire design and pretesting

• Procedures for minimizing response errors

• Selection and training of interviewers

• Techniques for handling nonresponse 

• Procedures for tabulation and analysis
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Sampling errors (examined)

Nonsampling errors

• Errors due to non-observation

Undercoverage (examined)

Nonresponse (examined)

• Errors in observations

Measurement

Data processing

No survey is perfect in all regards!

Sample 
set (s)

Target population (U)

Sampling error
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Sample 
set (s)

Target population (U)

Sampling error and nonresponse error

Response set (r)

∑= U ky
N

P 100

Parameter to estimate : The proportion, in 
%, of elements with a given property :

where

⎩
⎨
⎧

=
                             otherwise  0

property  thehas element  if  1
 

k
yk

A simple experiment to illustrate
sampling error and nonresponse error

50assumeusLet =P
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Sampling design: SI ,  n  from N

∑= s ky
n

P 100ˆ

Estimator of  P if full response :

Estimator of  P if m out of  n respond :

∑= r kNR y
m

P 100ˆ

Assume no auxiliary information available

Let us study what happens if the
response distribution
is as follows, where

⎩
⎨
⎧

=
                               otherwise  .90

property  thehas element   if   5.0
θ

 
k

k

Note: The response is directly related to 
the property under estimation.

100 repeated realizations  (s, r)

:)Pr(θ respondskk =
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Comments

- In practice, we never know the response 
probabilities. To be able to study the effect of 
nonresponse,  assumptions about response 
probabilities are necessary.

- Increasing the sample size will not reduce the 
nonresponse bias. As a matter of fact, the 
proportion of MSE due to the bias will increase 
with increasing sample size, as we now shall 
show. 

We consider response distributions of the 
type  : 

⎪⎩

⎪
⎨
⎧

=
∗

                               otherwise  .90
property  thehas element   if  θ θ

 
k

k

Consider four such response distributions :

;85.0θ)2(;5.0θ (1) == ∗∗

;89.0θ)4(;88.0θ)3( == ∗∗
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MSE
BiaslBRe

2
2 100×=

2BiasVarMSE +=
where

the proportion of MSE due to squared bias :

100 repeated realizations  (s, r); for each of 
these, we compute

then compute
∑= r kNR y

m
P 100ˆ

2lBRe for different sample sizes and resp. distrib.

 
                           n  ∗θ  

30 300 1000 2000 
0.50 65.1 94.9 98.4 99.2 
0.85 2.6 17.2 42.2 59.1 
0.88 0.4 3.2 10.1 19.4 
0.89 0.1 0.8 2.6 5.9 
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The proportion of MSE due to squared
bias…

(i) increases with increasing sample size

The high proportion will cause the 
confidence interval to be invalid, 
as we now show.

(ii) is rather high for large sample sizes even 
when the difference between the response 
probabilties for elements with the property and 
elements without the property is small.

The usual 95% confidence interval

m
PPP NRNR

NR
)ˆ100(ˆ

96.1ˆ −
±

would be computed as

Problem: The coverage rate does not reach 
95% when there is NR.                                           
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Sample size (n) 

30 300 1000 2000 
93.2 92.6 87.1 77.9 

 

Coverage rate (%) for different sample sizes
for the response distribution with

⎩
⎨
⎧

=
                               otherwise  .90

property  thehas element   if  .850
θ

 
k

k

Overcoverage Undercoverage

”Persisters”

Frame population Target population 

Sampling, nonresponse and undercoverage error
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R: Target population elements with complete
or partiell response

NR: Target population elements with no or 
inadequate response

O: Elements in the sample which we do not 
know if they belong to the target population or 
the overcoverage

: Elements in the sample which belong to the 
overcoverage

Different sets

 Φ

C: Target population elements with 
complete response

NC: Target population elements 
with partiell response

Different sets (contin.)
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The data collection

Rn NRn  On  φn

 n

Cn NCn

Breakdown of the sample size n

ONRR
R

nunn
n

×++
=

Unweighted response rate = 

where u is the rate of O that belongs  
to the nonresponse. 

Swedish standard for calculation of 
response rates
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∑ ∑∑
∑

++
=

NR O kkR k
R k

dudd
d

Weighted response rate = 

NR is an increasingly serious problem. 
It must always be taken into account in 
the estimation.

We illustrate this by some evidence. 
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The Swedish Labour Force Survey - Time 
series of the nonresponse rate

Nonresponse analysis in the Survey on Life and Health

Age group 18-34 35-49 50-64 65-79 

Response rate(%) 54.9 61.0 72.5 78.2 
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Country of birth Nordic 

countries

Other 

Response rate (%) 66.7 50.8 

 

 

Income class (in 

thousands of SEK) 

0-149 150-299 300- 

Response rate (%) 60.8 70.0 70.2 
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Marital status Married Other 

Response rate (%) 72.7 58.7 

 

 

Education level Level 1 Level 2 Level 3 

Response rate (%) 63.7 65.4 75.6 
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Metropolitan residents 

Single people

Members of childless households

Young people

Divorced / widowed people

People with lower educational attainment

Self-employed people

Persons of foreign origin

International experience

Lower response rate for :

Use of (the best possible) auxiliary information
will reduce

the nonresponse bias
the variance
the coverage errors

This course will show :
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1_3
Discussion

Survey response in your organization

Trends in survey response rates ? Increasing ?

What are some typical response rates ? In the 
Labour Force Survey for ex.? Reason for concern ?

Have measures been introduced to increase survey 
response ?

Have measures been introduced to improve 
estimation ?  By more efficient use of auxiliary 
information, or by other means ? 
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Some response rates

The Swedish Household Budget Survey

1958 86 % 

2005 52 %

The Swedish Labour Force Survey

1970 97 %

2005 81 %
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70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06

Total unit
nonresponse

Noncontact Refusal

The Swedish Labour Force Survey - Time 
series of the nonresponse rate
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1_4
The use of auxiliary

information under ideal 
survey conditions

Review : Basic theory for complete response

Important concepts                                              
in design-based estimation

for finite populations  :

• Horvitz-Thompson (HT) estimator
• Generalized Regression (GREG) 

estimator
• Calibration estimator 
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The progression of ideas

Unbiased estimators for common designsfor common designs
(1930’s and on). Cochran (1953) and other 
important books of the 1950’s :
• stratified simple random sampling (STSI)
• cluster & two-stage sampling

Horvitz-Thompson (HT) estimator (1952) : 
arbitrary sampling design; the idea of

individual inclusion prob’s

The progression of ideas

GREG estimator (1970’s) : 
arbitrary auxiliary vector for 

model assisted estimation

Calibration estimator (1990’s) : 
identify powerful information ; use it

to compute weights for estimation             
(with or without  NR)

Concurrently, development of  computerized 
tools :   CLAN97, Bascula, Calmar, others



3

Basic theory for complete response
Population U                

of elements k = 1, 2, ..., N

Sample s (subset of  U)

Non-sampled (non-observed) :  U – s

Complete response : all those sampled are 
also observed (their y-values recorded)

{ }NkU ,...,,...,2,1=

s
)(sp

kπ

kkd π/1=

l lkπ

Finite population  

Sample  from  U
Sampling design

Inclusion prob. of   k

Design weight of  k 

Joint incl. prob. of  k and 

Notation
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y

ky

Study variable                 

Its value for element  k

We want to estimate            

Usually, a survey has many y – variables 
Can be categorical of continuous

Notation

∑U yk

qU

UUq ⊆

∑ qU ky

Notation

Domain =   Sub-population 

Domain total to estimate : 

A typical domain :

It is a subset of  U  :
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qky

∑= U yqk

Domain-specific  y-variable                 

Its value for element  k

Domain total to estimate:            

Notation

qy

∑ qU ky

0=qkykqk yy = in domain , outside

for ex.: total of disposable income (the variable) 
in single-member households (the domain)

A typical survey has many y-variables :                     
One for every socio-economic concept
One for every domain of interest  (every new 
domain adds a new  y-variable) 
A  y-variable is often both categorical (“zero-
one”) and domain-specific (= 0 outside 
domain).                                                        
For ex.:  Unemployed (variable) among persons 
living alone (domain).

The approach to estimation
must handle a variety of practical circumstances
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∑= U kyY

Even though the survey has many   y-variables, 
we can focus on one of them                                
and on the estimation of                                      
its unknown population total

∑= s ydY kkHTˆ

HT estimator
for complete response :

Auxiliary information not used                      
at the estimation stage                                         

kkd π/1=Design weight of   k  :
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=)ˆ(V HTY ll yyF kU k∑∑

HT estimator
for complete response :

Variance 

1−=
l

l
l

k

k
k d

ddF ;1

l
l

k
kd

π
=k≠lfor

1−= kkk dF

For ex., for SI sampling, we have

22 )( 11)( yUs S
Nn

NyNV −=

sHT yNY =ˆ

and

=)ˆ(V̂ HTY lll yyFd ks kk∑∑

HT estimation
for complete response :

The variance estimator

It has familiar expressions for ‘the usual designs’.    

∑
=

−
H

h hhh hysS
Nn

N
1

22 )11(

hs
H

h
hHT yNY ∑

=
=

1
ˆ

For STSI , with nh from Nh in stratum  h

with estimated variance
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∑U kx

Its value for element  k :
To qualify as auxiliary vector,      
must know more than just            

Auxiliary vector

denoted   x ; its dimension may be large

kx

Uk ∈forFor example, know

Or know the total
kx

sk ∈for

kx

=GREGŶ ∑ ∑∑ ′−+ U dskkkkk s ds yd ;)( Bxx

ds;B

GREG estimator of

HT est. of  Y +    regression adjustment;   
an estimator  of  0   

∑= U kyY

is a regression vector ,             
computed on the sample data

(1980’s)
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=GREGŶ
Sample sum of 
weighted residuals

Population sum of   
predicted   values

GREG estimator ; alternative expression

∑∑ −+ s kkkU k yydy )ˆ(ˆ

dskky ;ˆ Bx′=

computable for k∈U

∑U kx

The auxiliary information  for GREG is :

= pop. total of aux. vector

( )′= kk x,1x ),( ′=⇒ ∑∑ U kU k N xx

Examples :

( )′= 0,...,1,...,0kx

• A continuous x-variable

• A classification of the elements 

( )′=⇒∑ JjU k NNN ,...,,...,1x
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)()( 1
; ks kkks kkds ydd ∑∑ −′= xxxB

matrix to invert × column vector

the estimated regression vector

containsĜREGY

)()( 1
kU kkU kU y∑∑ −′= xxxB

is a (nearly unbiased) estimator 
of its population counterpart :

System of notation
for means,  regression coefficients, etc.

First index : the set of elements that defines        
the quantity (“the computation set”)

then semi-colon , then
Second index : the weighting used in the quantity.    
Examples:

∑
∑

=
s k

ks k
ds d

yd
y ;

)()( 1
; ks kkkks kds ydd ∑′∑= − xxxB

weighted sample mean
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)()( 1
;):( ks kkkks kdsy ydd ∑∑ −′= xxxB x

If the need arises to be even more 
explicit  :

Regression of   y on  x ,  computed over the 
sample  s with the weighting  dk = 1/πk

∑= U kU y
N

y 1

)()( 1
kU kkU kU y∑∑ −′= xxxB

System of notation

Absence of the second index means :                  
the weighting is uniform (“unweighted ”).

Examples  :

unweighted population mean

(unweighted regr. vector)
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∑= s kkHT ydŶ

kkd π/1=

Estimators as weighted sums

HT estimator :

The weight of   k is

kk gd

GREG estimator as a weighted sum :

The weight of element   k is 

Estimators as weighted sums

ks kkGREG ygdY ∑=ˆ

=      design weight     ×
adjustment factor based on 

the auxiliary info.
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kskg xλ′+=1

∑ ∑ ∑ −′′−=′ U s s kkkkkks dd 1)()( xxxxλ

gives element  k the weight

kkd π/1=

The GREG estimator

kk gd
where

kk gd
kskg xλ′+=1

∑ ∑ ∑ −′′−=′ U s s kkkkkks dd 1)()( xxxxλ

GREG estimator; computation

ks kkGREG ygdY ∑=ˆ

∑ −′s kkkd 1)( xx1. Matrix inversion
2. Compute

4. Finally compute
3. Compute

Several software exists for this.
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∑ ∑ ∑ ′′−=′ −
U s s kkkkkks dd 1)()( xxxxλ

Comment

Matrix inversion is part of the 
weight computation                    

matrix inversionrow vector

GREG estimator ks kkGREG ygdY ∑=ˆ

Property of the weights :

total)known(∑∑ = U kks kk gd xx

They are calibrated to the known information
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Bias of GREG : is very small, already for 
modest sample sizes

Bias/stand. dev. is of order 2/1−n
Bias decreases faster than the stand.dev.     
For practical purposes we can forget the bias 
(assuming full response).

Variance estimation for GREG :                 
Well known since the 1980’s

kxλ′+1

Comment

Weights of the form

will be seen  often in the following :

the design weight multiplied by an 
adjustment factor of the form

)1( kkd xλ′+
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Note :                                                          
When we examine estimation for NR,                   
(Sessions 1_5 and following),  the 
weights will again have the form               
design weight × adjustment factor 

but then the estimators will be biased,              
more or less, depending on the strength 
of the auxiliary vector

Auxiliary information: An example

For every  k in   U,    suppose  known :

• Membership in one out of  2 × 3 = 6  possible 
groups,  e.g.,   sex by   age group

• The value  xk of a continuous  variable x    
e.g.,  xk = income  of   k

Many aux. vectors can be formulated                          
to transmit some or all of this total information .  

Let us consider  5 of these  vectors .
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∑ ′U kxN ),(),1( ′kx

∑U kxkx

Vector  xk Info Description

total population income

∑U kx

population size and total 
population income

( )′∑∑∑ ⋅⋅⋅⋅⋅ 321
,,,, 21 U kU kU k xxxNN

)...,,,,...,(
23112311 ′∑∑ U kU k xxNN( )′0,0,0,0,,0,0,0,0,0,1,0 kx

)...,,(
2311

′∑∑ U kU k xx

( )′0,,0,0,1 kx

( )′0,0,0,0,,0 kx

Vector Info

population income by age/sex group

size of age/sex groups, and          
population income by groups

size of sex groups, and income by age groups
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ks kkGREG ygdY ∑=ˆ
For each of the five formulated vectors,

will have a certain mathematical form  :               
Five  different expressions, but all of them are 
special cases of the general formula for  gk .              
(No need to give them individual names - they 
are just special cases of  one estimator namely  
GREG)

),1( ′= kk xxFor example, with the aux. vector

takes the form that ‘the old literature’ calls 
the (simple)  regression estimator,

ks kkGREG ygdY ∑=ˆ

( ){ }dsdsUdsGREG BxxyNY ;;;ˆ −+=

In modern language :  It is                 
the GREG estimator for the aux vector ),1( ′= kk xx
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1_5
Introduction to estimation in

surveys with nonresponse 

Sample 
set (s)

Response set (r)

Target population (U)
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kr kW ywY ∑=ˆ (weighting only)

Notation

∑= U kyYOur objective : To estimate

NRŶwith an estimator denoted

representing either

kr kIW ywY •∑=ˆ (imputation followed 
by weighting)

A typical survey has many  y-variables, indexed         
i = 1, …, I.

Response set  for variable  i : ri

Response set for the survey: The set of elements 
having responded to at least one item  :  r

Imputation followed by weighting
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kr kIW ywY •∑=ˆ

Imputation followed by weighting

where
⎩
⎨
⎧

−∈
∈

=•
ik

ik
k rrky

rky
y

for   ˆ
      for   

Imputation for item NR: The imputed value 
takes  the  place  of  the  missing  value  yk

kŷ

Total error = Sampling error +  NR error

Components of error

)ˆˆ()ˆ(ˆ YYYYYY NRNR −+−=−

is the estimator of  Y that would be used 
under complete response (r = s) 

NRŶ

Ŷ

is the “NR-estimator” for  Y
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Two phases of selection

1. s is selected from U

2.  given s,  r is realised as a 
subset from s. 

The two probability distributions are

)(sp (known)
and

)( srq (unknown)

Both are taken into account                           
in evaluating bias and variance

We use the conditional argument :

)]([)( sEEE qppq ⋅=⋅

)]([)]([)( sVEsEVV qpqppq ⋅+⋅=⋅

For variance :

For expected value :
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The bias:

The accuracy,   measured by  MSE :

YYEYB NRpqNRpq −= )ˆ()ˆ(

The basic statistical properties of

( )2)ˆ()ˆ()ˆ( NRpqNRpqNRpq YBYVYMSE +=

NRŶ

The bias
will be carefully studied in this course. It 
has two components

YYE NRpq −= )ˆ()ˆ( NRpq YB

)]ˆˆ([])ˆ([ YYEYYE NRpqp −+−=

NRSAM BB +=

sampling bias + NR bias

BSAM is zero  (for HT) or negligible (for GREG)
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It can be decomposed into two components

The variance

2)( )ˆ(ˆ)ˆ( NRpqNRpqNRpq YEYEYV −=

By definition

NRSAMNRpq VVYV +=)ˆ(

sampling variance + NR variance

]))ˆ(ˆ[()ˆ( 2YEYEYVV pppSAM −==

The sampling variance component :

depends only on the sampling design   p(s)

For ex., under SRS,                                   
if the full response estimator is  

22 )( 11
yUSAM S

Nn
NV −=

syNY =ˆ
then the well-known expression
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)ˆ( sYVEV NRqpNR =

The NR variance component is more complex :

),ˆ(2)( sNRpsNRp BYCovBV ++

( )sYYEB NRqsNR )ˆˆ( −= (conditional NR bias)

where

BSAM is negligible, and if Cov term small, then

the measure of accuracy :
=)ˆ( NRpq YMSE

≈)ˆ( NRpq YMSE )()ˆ()ˆ( 2
sNRpNRqpp BEsYVEYV ++

++++ ),ˆ(2)()ˆ()ˆ( 2
sNRpsNRpNRqpp BYCovBEsYVEYV

2)(2 SAMNRSAM BBB +

Add the squared bias to arrive at the
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The accuracy has two parts :

≈)ˆ( NRpq YMSE
44444 344444 21321

NR

sNRpNRqpp BEsYVEYV

todue

2

sampling
 todue

)()ˆ()ˆ( ++

The  main  problem  with   NR:                          
The  term  involving  the  bias,                            

can be a very large component of MSE 
)( 2

sNRp BE
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1_6
Weighting of data. 

Types of auxiliary information. 
The calibration approach.

Sample s

Response set r

Target population  U
Structure
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Population U        
of elements  k = 1, 2, ..., N

Sample s (subset of  U)
Non-sampled :   U – s

Response set r (subset of  s)
Sampled but non-responding :    s – r

U  ⊇ s   ⊇ r

Notation and terminology

The objective

remains to estimate the total ∑= U yY k

In practice, many y-totals and functions of y-totals.    
But we can focus here on one total.                     
No need at this point to distinguish                    
item NR and unit NR.                                                 
Perfect coverage assumed.
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ky

Usr ⊆⊆

sr ⊂

rk ∈

The response set r
is the set for which we observe

Available y-data : for

where

Nonresponse means that

Missing values : rskyk −∈for

ky

Full response means that sr =
with probability one

Phase one : Sample selection
with  known sampling design

Phase two : Response selection
with  unknown response mechanism

Two phases of selection
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Phase one: Sample selection

)(sp

kπ

Known sampling design :

Known inclusion prob.  of   k : 

Known design weight of  k  :

kkd π/1=

)( srq

kθ

Unknown response mechanism :

Unknown response prob.  of   k : 

Phase two:   Response selection

Unknown response influence of   k : 

kk 1/θ=φ
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kkd π/1=

kk 1/θ=φ

A note on terminology

computable weight

unknown; not a weight, 
called influence

Sample weighting
combined with                                 

response weighting

Desired (but impossible) combined weighting :

kk
kkd

θ
1

π
1
×=×φ

known               unknown
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∑∑ = r ydr yd
kkkk

k

k φ
θ

Desirable nonresponse weighting

=Ŷ

Cannot be computed,  

because unknown influences kk 1/θ=φ

We present  the calibration approach.

But first we look at a more              
traditional approach.

Most estimators in the traditional approach 
are special cases of the calibration approach.
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Traditional approach : The principal idea
is to derive estimates
of the unknown response prob. kθ

kθ̂

Then use these estimates in constructing the 
estimator of the total  Y .

An often used form of this approach  :                      

Ŷ ∑= r k
k

k yd
θ̂
1

replace

sampling   
weight

NR adjustment 
weight

k
k

k ydY r∑=
θ
1ˆStarting from

kθ/1 by kθ̂/1

We get
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A large literature exists about this type of 
estimator  :

∑= r k
k

k yd
θ̂
1Ŷ

• response homogeneity group (RHG:s)

• logistic

Estimation of  θk done                                 
with the aid of a   response model :

The term response propensity is sometimes used

The idea behind                                
response homogeneity groups (RHG:s)

The elements in the sample (and in the 
response set) can be  divided into groups.

Everyone in the same group responds with 
the same probability, but these probabilities 
can vary considerably between the groups .
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Example  :  STSI sampling                    
RHG:s coinciding with strata

(each stratum assumed to be an RHG) 

hrhhrh

h

h

h yNy
m
n

n
N H

h
k

H

h
∑∑∑
==

=
11

=Ŷ

The procedure is convenient but oversimplifies the 
problem. It is a special case of the calibration 
approach.

h

h

h

h

h

h
m
N

m
n

n
N

==
k

kd
θ̂
1

=Ŷ

A variation of the traditional approach

Start with 2-phase GREG estimator

kr k
k

k ygd∑ θθ
1

kk
k

k ygdr∑ θ̂θ̂
1

After estimation of the response prob, we get

=Ŷ
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A general method for estimation in the presence 
of NR  should    

• be easy to understand                                      

• cover many survey situations

• offer a systematic way to incorporate auxiliary 
information 

• be computationally easy

• be suitable for statistics production (in NSI:s)       

One can maintain that                                         
the calibration approach

satisfies these requirements.                   
There is an extensive literature since 1990.
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Steps in
the calibration approach

• State the information you wish to use.      
• Formulate the corresponding aux. vector
• State the calibration equation
• Specify the starting weights (usually the 

sampling weights)
• Compute new weights  - the calibrated 

weights - that  respect the calibration 
equation

• Use the weights to compute calibration 
estimates

Pedagogical note

Calibration estimation is a highly general approach. 
It covers many situations arising in practice.

Generality is at the price of a certain level of 
abstraction.    

The formulation uses linear algebra.                   
Knowledge of regression theory is helpful.
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Why can we not use the    
design weights         kkd π/1=

without any further adjustment ?

Answer: They are not large 
enough when there is  NR.

∑= r kk ydŶ ⇒ underestimation

We must expand the design weights

Information
may exist 

at the population level
at the sample level
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Sample s

Response set r

Target population  U
Structure

Levels of information

Distinguish :
• Information at the  population level. Such 

info, taken from population registers,  is 
particularly prevalent and important in 
Scandinavia,  The Netherlands, and 
increasingly elsewhere in Europe

• Information at the  sample level. Such info 
may be present in any sample survey
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Levels of information

∗
kx transmits information                            

at the  population level

o
kx transmits information                      

at the  sample level

Notation : Two types of auxiliary vector

Auxiliary vector ,  population level

• known value for every k in U

• the total                         is imported
from accurate outside source 

∗
kx

∑ ∗∗ = U kxX

(given in the frame, or coming from
admin.reg.

Two common situations  :

∗
kx need not be known for every  k
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Sources of variables for the star vector
• the existing frame

• by matching with other registers

Examples of variables for the star vector : 
For persons : age, sex, address, income

To related persons: Example, in survey of 
school children, get (by matching) 
vartiables for parents

∗
kx

Auxiliary vector , sample level

is a known value for every k in  s
(observed for the sample units)

Hence we can compute and use                    

∑= s kkd oo xX̂

o
kx

It is unbiased information ,                       
not damaged by NR
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Examples of variables for the moon vector
• Identity of the interviewer

• Ease of establishing contact with selected 
sample element

• Other survey process characteristics

• Basic question method (“easily observed   
features” of sampled elements)

• Register info transmitted only to the 
sample data file, for convenience

o
kx

The information statement

• Specifies the information at hand ;
totals or estimated totals 

• May refer to either  level: 
Population level,  sample level

• It is  not a model statement
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Information is something we know;          
it provides input for the calibration 
approach .

(By contrast, a model is something you 
do not know, but venture to assume.)

Statement of auxiliary information
sampling, then nonresponse

Set of units

Population  U

Sample    s

Response set   r

Information

known∑ ∗
U kx

skk ∈known,ox

rkkk ∈∗ known,and oxx
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• The auxiliary vector

• The information available about that vector

General notation :

General notation  :   X

kx

Three special cases  :

• population info only 

• sample info only

• both types of info 
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∗= kk xx

• population info only 

• sample info only

o
kk xx =

)totalknown(; ∑ ∗= U kxX

)totalestimated unbiasedly(

; ∑= s kkd oxX

=kx
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∗

o
k

k
x
x

• both types of info 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=
∑
∑ ∗

s kk

U k
d ox

xX;

)0,...1,...,00,...,1,...,0( ′=kx

identifies age/sex group 
for  k∈ U

identifies interviewer           
for  k∈ s

Example :
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For the study variable y  
we know   (we have observed) :

Usrrkyk ⊂⊂∈ ;for

Missing values :

rskyk −∈for

∑r kk yw=WŶ

The calibration estimator is of the form

kkk vdw =

serves to
• expand the design weight dk for unit k
• incorporate the auxiliary information
• reduce as far as possible bias due to NR
• reduce the variance

where dk = 1/πk , and the factor kv
with
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Note: We want vk > 1   for all (or nearly
all)   k ∈ r ,  in order to compensate for 
the elements lost by  NR.

Primary interest :  

Examine the (remaining) bias in                  
attempt to reduce it further.              
Recepie: Seek better and better

auxiliary vectors for the calibration!         
(Sessions 2_3,  2_4,  2_5)

Secundary interest (but also important): 

Examine the variance of                              
find methods to  estimate it .

WŶ

∑= r kkW ywŶ
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kkv xλ ′+=• 1

)exp( kkv xλ′=•

linear in the aux. vector

exponential

λDetermine first

Mathematically, the adjustment 
factor   vk can be determined by 
different criteria, for example

(explicitly or by numeric methods)

kkvi xλ ′+= 1)(

Xx =∑r kkk wdii)(

kv is determined to satisfy  :

linearity

calibration to the given 
information

and

λNow determine

X

Linear adjustment factor
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( ) ( ) 1−∑∑ ′′−= r kkkr kk dd xxxXrλ′

assuming the matrix non-singular.                 
Then the desired calibrated weights are

From (i) and (ii) follow

=′λ

kkk vdw = )1( krkd xλ ′+=

( ) ( ) 1−∑∑ ′′−=′ r kkkr kk dd xxxXλ

Computational note:

can be negative. It does happen, but rarely.

Possibility of  negative weights :

)1( kkkk dvd xλ ′+=

with
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( ) ( ) 1−∑∑ ′′− r kkkr kk dd xxxX

Computational note:

is not near zero, as it was                                 
for the GREG estimator (in the absence of NR)

The vector

Properties of the calibrated weights

)1( krkk dw xλ ′+=

kk dw > all k , or almost all

1. They expand :

2. ∑ =r k Nw

under a simple condition

= population size
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∑
∑ ∗

s kk

U k
d ox

x=X

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∗

o
k

kk
x
xx

Note : if both types of information, then

and the information input is

When both types of information present,       
it is also possible to calibrate in two steps :

First on the sample information; gives 
intermediate weights.

Then in step two, the intermediate weights 
are calibrated, using also the population 
information, to obtain the final weights wk .
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Consistency                                   

is also an important motivation for calibration (in 
addition to bias reduction and variance reduction) 

If  xk is known for   k ∈ s,  the statistical agency can 
sum over  s and publish the unbiased estimate

Users often require that this estimate coincide 
with the estimate obtained by summing over   r
using the calibrated weights :

∑= s kkd xX̂

∑= r kkW w xX̂

Calibration makes this  consistency possible

Almost all of our  aux. vectors are                             
of the form:

There exists a constant vector  μ such that 

kk allfor1=′xμ

.)0,1(then,),1(ifexample,For ′=′= μx kk x
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( ) }{ 1
kr kkkkkkk ddvdw xxxX −∑ ′′==

kkk allfor1thatsuchisWhen =′xμx

then the weights simplify :

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=
∑
∑ ∗

s kk

U k

d ox

xX is the information input

where

A summary of this session:  We have

• discussed two types of auxiliary information

• introduced the idea of a weighting (of 
responding elements) that is calibrated to the 
given information 

• hinted that calibrated weighting gives 
consistency, and that it often leads to both 
reduced NR bias and reduced variance . More 
about this later.



1

1_7
Comments on the 

calibration approach

The calibration approach

• Generality (any sampling design, 
and auxiliary vector)

• ”Conventional techniques” are             
special cases

• Computational feasibility
(software exists) 

Some features:
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The calibration approach brings generality

Earlier : Specific estimators were used for 
surveys with NR. They had names, such as        
Ratio estimator, Weighting Class estimator   
and so on.

Now : Most of these ‘conventional techniques’
are simple special cases of the calibration 
approach. Specific names no longer needed.
All are calibration estimators.

Another feature of the calibration estimator:

No sampling error, no NR-bias!

∗∗ ′= βx )( kky

∑ ∗∗ == U kxXXand∗= kk xx

Consider the case where

∑ == U kW YyŶ
k ∈ U (perfect linear regression),  then

Perfect estimates under certain condition

Assume that holds for every
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But they are not unique: They are not the only
ones that satisfy the calibration equation.  

Recall:  We have specified the weights as

krkv xλ′+=1

( ) ( ) 1−∑∑ ′′−=′ r kkkr kkr dd xxxXλ

kkk vdw =

They satisfy the calibration equation

Xx =∑r kkw

;

where

In fact, for a given  xk-vector with given 
information  input X, there exist many sets of 
weights that satisfy the calibration equation 

Xx =∑r kkw

In other words, “calibrated weights” is not        
a unique concept.

Let us examine this. 



4

The calibration procedure takes certain          
initial weights
and transforms them into                    
(final) calibrated weights

The initial weigths can be specified in 
more than one way.

kkk vdw α=Consider the weights

krkv zλ′+=1

( ) ( ) 1−∑∑ ′′−=′ r kkkr kkr dd xzxXλ αα

dαk is an initial weight

zk is an instrument vector

where

These  wk satisfy the calibration equation

∑∑ = U kr kkw xx

for any choice of   dαk and   zk
(as long as the matrix can be inverted)

)( bemay kx≠
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The ”natural choices”

kkk dd πα /1==

are used most of the time and will be called the  
standard specifications .

kk xz =and

An important type of  z-vector
There exists a constant vector μ

Ukk ∈=′ allfor1zμ

not dependent on  k such that

Ukk ∈=′ allfor1xμ

When , this condition reads:
z

 kk xz =

Almost all of our x-vectors are of this type
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kk dd =α

kdα  = kdC   
and 

then

give the same calibrated weights

1=′ kzμ  for all k  When the  z-vector satisfies

Different initial weights 
may produce the same calibrated weights

Example

• SI  sampling;  n from  N

Then the initial weights

and

give the same calibrated weights, namely,
m
N

m
ndd kk ==α

m
Nwk =

n
Ndd kk ==α

 1* === kkk xxz•
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Invariant calibrated weights
are also obtained in the following situation:
• STSI with strata pU

Then the initial weights

ppkk nNdd /==α
and

ppppkk mNmndd /)/( =×=α

give the same calibrated weights,
namely

=  stratum identifier
;  np from  Np ; p = 1,…,P

ppk mNw /=

*
kkk xxz ==•

Usually the components of   zk are 
functions of the   x-variables

For example, if ),( 21 ′= kkk xxx

),( 21 ′= kkk xxz
we get calibrated weights by taking
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kkk x== ∗xx and

They give

∑ ∑
∑

×= U
r kk
r kk

kW xd

yd
xŶ

1=kz

The well-known Ratio (RA) estimator 
is obtained by the specifications

Note : Non-standard specifications !

A perspective on the weights :  We can write the 
calibrated weight as the sum of two components

( ) }{ 1
kr kkkkMk ddw zxzX −∑ ′′= αα

RkMkk www +=

( ) ( ) }{ 11 kr kkkr kkkRk dddw zxzx −∑∑ ′′−= ααα

= “Main term” + “Remainder”

with
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Rkw

We can specify a constant vector μ
not dependent on k such that

MkkRk www == and0

kk allfor1=′zμ

is often small compared to the main term.

kwRk allfor0=In particular ,
when  zk has the following property :

Then

(An example : zk = xk =(1, xk)' and   μ=(1,0)' )

When  wRk = 0 ,  the calibrated 
weights have simplified form

( ) }{ 1
kr kkkkMkk ddww zxzX −∑ ′′== αα

( ) }{ 1
kr kkkkMkk ddww xxxX −∑ ′′==

Under the standard specifications :
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If r = s (complete response),  and if
*xz kk c=and*xx kk =

for any positive constant c, then

the calibration estimator and                  
the GREG estimator
can be shown to be identical.

Agreement with the GREG estimator
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1_8
Traditional estimators as 

special cases of the calibration
approach

The family of calibration estimators

includes many                                               
‘traditional estimator formulas’

Let us look at some examples. 

The standard specification

kk xz =andkk dd =α

is used (unless otherwise stated).
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An advantage of the calibration approach:

We need not any more think in terms of 
‘traditional estimators’ with specific names.

All of the following examples are special cases 
of the calibration approach, 
corresponding to simple formulations    
of the auxiliary vector   xk

The simplest auxiliary vector

drW yNY ;ˆ =
∑
∑=

r k
r kk

d
yd

N

known as the Expansion estimator

for all  k1== ∗
kk xx

EXPŶ=

The corresponding  information is weak :

NUU k == ∑∑ 1x

∑
×=

r k
kk d

Ndw

Calibrated weights (by the general formula) :
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The simplest auxiliary vector

1== ∗
kk xx

In particular,  for SI   (n sampled from  N;  
m  respondents):

m
N

m
n

n
Nwk ==

sampling NR adjustment

The simplest auxiliary vector

for all  k1== ∗
kk xx

drEXPW yNYY ;ˆˆ ==

• bias usually large

1vectoraux.the:  weakness =• kx
recognizes no differences among elements

⇒
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UU yy −θ;≈NYEXP /)ˆ(bias
Note the                         
difference between two means : 

The theta-weighted mean

The unweighted mean

∑
∑

=
U k

U kk
U

y
y

θ
θ

θ;

N
y

y U k
U

∑
=

When  y and  θ are highly correlated,              
that difference can be very large 

(more about this later).

One can show, for any sampling design,

Despite an often large nonresponse bias,  the 
expansion estimator is (surprisingly enough)    
often used by practitioners and researchers in social 
science.

This practice, which has developed in some 
disciplines, cannot be recommended.

Comment on
the Expansion Estimator
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′),...,,...,( 1 Pkpkk γγγ

The classification vector  (“gamma vector”)

=kγ

′= )0,...,1,...,0(

The only entry  ‘1’
identifies the group   (out of  P possible ones)        
to which element    k belongs

Elements classified into   P dummy-coded groups   

The classification vector

Typical examples:

• Age groups

• Age groups by sex (complete crossing)

• Complete crossing of   >2 groupings

• Groups formed by intervals                          
of a continuous  x-variable
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kγ== ∗
kk xx ′= )0,...,1,...,0(

The classification vector 
as a star vector

( )′=∑ ∗
U Ppk NNN ,...,,...,1x

The associated information :                         
The vector of population class frequencies

Calibrated weights (by the general formula) :

∑
×=

pr k

p
kk d

N
dw for all  k in group  p

kkk γxx == ∗

The calibration estimator takes the form

The classification vector 

as a star vector :

∑
=

=
P

p
drpW pyNY

1
;ˆ

PWAŶ=

known as the
Population Weighting Adjustment estimator
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∑

∑
=

p

p
p

r k

r kk
dr d

yd
y ;

∑
=

=
P

p
dprpPWA yNY

1
;ˆ

Population Weighting Adjustment estimator

with

=  weighted group  y-mean      
for respondents

A closer look :

Np = known group count in the population

kγ ′= )0,...,1,...,0(

The classification vector   
as a moon vector

Information for calibration :                        
the unbiasedly estimated class counts

== o
kk xx

PpdN
ps kp ,...,2,1,ˆ ==∑

∑

∑
×=

p

p

r k

s k
kk d

d
dw

The general formula gives the weights

for all  k in group  p
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kγ

for all  k in group  p . 

== o
kk xx

p

p
k m

n
n
Nw =

The classification vector 

as a moon vector :

In particular for  SI  sampling :

Sampling 
weight

NR adjustment                       
by inverse of                           
group response rate

kγ ′= )0,...,1,...,0(

WCŶ=

The classification vector   
as a moon vector

known as
Weighting Class estimator

== o
kk xx

∑
=

=
P

p
drpW pyNY

1
;ˆˆ
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∑

∑
=

p

p
p

r k

r kk
dr d

yd
y ;

Weighting Class estimator

=  weighted group y-mean      
for respondents

∑
=

=
P

p
drpWC pyNY

1
;ˆˆ

Class sizes not known but estimated: ∑= ps kp dN̂

A  continuous  x-variable

for example,  xk = income ;  yk = expenditure

Two vector formulations are of  interest :

kkk x== ∗
• xx ∑∑ = U kU k xx:Info

),(:Info ′= ∑∑ U kU k xNx),1( ′== ∗
• kkk xxx
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RA
r kk
r kk

U kW Y
xd
yd

xY ˆ)(ˆ ==
∑
∑

∑

kkk x== ∗xx
is obtained by formulating

Not very efficient for controlling bias.                        
A better use of the x-variable :                         
create size groups or “include an intercept”

The Ratio Estimator

1=kzand

∑
∑

×=
r kk
U k

kk xd
x

dwweights

calibration estimator

(non-standard !)

The (simple) Regression Estimator

kkkk x zxx =′== ∗ ),1(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

−
+×=

∑∑
)(

)(

1
;2

;

;
drk

r drkk

drU

r k
kkk xx

xxd

xx
d

Ndvd

calibrated weights given by :

A better use of the x-variable:

{ } REGdrdrUdrW YBxxyNY ˆ)(ˆ ;;; =−+=

The calibration estimator takes the form

regression coefficient
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∑∑= r kr kkdr dxdx /;

{ }drdrUdrREG BxxyNY ;;; )(ˆ −+=

dry ;

∑

∑
−

−−
=

r drkk

r drkdrkk
dr

xxd

yyxxd
B 2

;

;;
;

)(

))((

with

A closer look : 

analogous  y-mean

The (simple) Regression Estimator

regression of  y on  x

Combining                                      
a classification and a continuous x-variable

(ii) a continuous variable with value  

Information about  both

′),...,,...,( 1 Pkpkk γγγ=kγ

′= )0,...,1,...,0(

kx

(i) the classification vector

and
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'
1 ),...,,...,( kkkPkkpkkkkk xxxx γxx =′== ∗ γγγ

Known group totals for a continuous variable

gives the  SEPRA (separate ratio) estimator

Information for   p = 1,…, P : ∑ pU kx

)0,...,1,...,0( ′== kk γz (not standard)

The vector formulation :

′),...,,...,,,...,,...,( 11 PkkpkkkkPkpkk xxx γγγγγγ

Known group counts and
group totals for a continuous variable

kkkkkk x zγγxx =′′′== ∗ ),(

Information for   p = 1,…, P : ∑ pU kp xN and

The vector formulation :

gives the  SEPREG (separate regression) estimator
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The Separate Regression Estimator

( ){ }∑
=

−+=
P

p
drdrUdrpW pppp BxxyNY

1
;;;ˆ

SEPREGŶ=

′= − ),...,,...,,,...,,...,( ,111 kHhkkPkpkk δδδγγγ

Marginal counts for a two-way classification

P groups for classification  1  (say, age by sex)         
H groups for classification  2  (say, profession)

== ∗
kk xx

Calibration on the  P + H - 1 marginal counts .         
Note :  H – 1 

Gives the two-way classification estimator

′= )0,...,1,...,00,...,1,...,0(
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Population Weighting Adjustment    (PWA)

Two-Way Classification (TWOWAY)

Separate Regression (SEPREG)

Separate Ratio (SEPRA)
Regression    (REG)
Ratio   (RA)

Weighting Class    (WC)
Expansion    (EXP)

List of ‘traditional estimators’
(We shall refer to them later.)

Comment : No need to give individual names 
to the traditional estimators.                          
All are calibration estimators.                                 
For example,  although known earlier as 
‘regression estimator’,

{ }drdrUdrREG BxxyNY ;;; )(ˆ −+=

is now completely described as the 
calibration estimator for the vector ),1( ′== ∗

kkk xxx
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1_9
Exercises

Your set of course materials contains an appendix 
with a number of exercises. 

Some of these ask you to formulate (verbally)   
your response to a given practical situation,              
others require an algebraic derivation.
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You are encouraged to consider these exercises, 
now during the course, or after the course.

Exercises 1 and 2 reflect practical situations that 
survey statisticians are likely to encounter in their 
work. Think about the (verbal) answers you would 
give.



1

2_1
Calibration with combined

use of sample information and 
population information

Sample level

Population level

o
kx

∗
kx

Different levels of auxiliary information
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Find estimates
of the unknown response prob. 

Ŷ
kθ

∑= r k
k

k yd
θ̂
1

kθ̂

Then form

Recall the traditional approach

If population totals are available, 
there may be a second step: Use
as starting weights; get final 
weights by calibrating
to the known population totals

kkd θ̂/

=Ŷ

Alternative traditional approach

Start from 2-phase GREG estimator

kk
k

k ygdr∑ θθ
1

kk
k

k ygdr∑ θ̂θ̂
1

After estimation of the response prob, we get

=Ŷ
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The first step in traditional approaches: 

The idea: Adjust for nonresponse by model fitting

An explicit model is formulated, with the       
as unknown parameters.

The model is fitted,       is obtained as an            

estimate of        ,  and 

is used as a weight adjustment to  

kθ

kθ
kθ̂

kθ̂/1

kd

Ex. Logistic regression fitting

Frequently used : Subgrouping

The sample s is split into a number of 
subgroups (Response omogeneity groups)

The inverse of the response fraction within
a group is used as a weight adjustment to kd
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We return to the calibration estimator

kkW ywY r∑=ˆ

The traditional approach often gives 

the same result as the calibration approach

Let us consider alternatives 
for computing the  wk

Single-step or two-step may be used. 

We recommend single-step, as follows:

Auxiliary vector:

Calibration equation:

Initial weights:

∑ r kkw x = ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∑
∑ ∗

s kk

U k
d ox

x
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∗

o
k

kk
x
xx

kk dd =α

Then compute the  wk
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Two variations of  two-step :

Two-step A

and 

Two-step B

Two-step A

Step 1: 

Initial weights:

Auxiliary vector:

kd

Calibration equation:

kx = o
kx  

∑r kkw oox =∑s kkd ox  



6

Two-step A (cont.)

Step 2:

Initial weights:

Auxiliary vector:

Calibration equation:

o
kw

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∗

o
k

kk
x
xx

∑ r kAkw x2 = ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∑
∑ ∗

s kk

U k
d ox

x
 

Two-step B

Step 1: 

Initial weights:

Auxiliary vector:

kd

Calibration equation:

kx = o
kx  

∑r kkw oox =∑s kkd ox  
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Two-step B (cont.)
Step 2:

Initial weights:

Auxiliary vector:

Calibration equation:

o
kw

∑ ∗
r kBkw x2 =∑ ∗

U kx  

kx = ∗
kx  

Here no calibration to the sample information
o
kks d x∑

An example of calibration with 
information at both levels

Sample level:

Population level:

o
kx  = kγ = ′γγγ ),...,,...,( 1 Pkpkk  

∗
kx  = ),1( ′kx  

(classification for  k ∈ s)

(xk a  continuous variable 
with known population total) 
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Single-step

Auxiliary vector:

Calibration equation:

Initial weights: kk dd =α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
k

k
x
γ

x

∑r kkw x = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∑
∑

s kk
U k
d

x
γ

 

Two-step A

Step 1: 

Initial weights:

Auxiliary vector:

kd

Calibration equation:

kk γx =o

∑r kkw oox =∑s kkd γ  
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Two-step A (cont.)

Step 2:

Initial weights:

Auxiliary vector:

Calibration equation:

o
kw

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
k

k
x
γ

x

∑r kAkw x2 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∑
∑

s kk
U k
d

x
γ

 

Two-step B

Step 1: 

Initial weights:

Auxiliary vector:

kd

Calibration equation:

kk γx =o

∑r kkw oox =∑s kkd γ  
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Step 2:

Initial weights:

Auxiliary vector:

Calibration equation:

o
kw

Two-step B (cont.)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∑U kx
N

∑ ∗
r kBkw x2 = 

( )′=∗
kk x,1x

Comments:

In general,   Single-step,   Two-step A   and      
Two-step B   give different weight systems.             
But we expect the estimators to have minor 
differences only. 

There is no disadvantage in mixing the 
population information with the sample
information. It is important that both sources are 
allowed to contribute.
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The Two-step B procedure
resembles the traditional approach, 
and has been much used in practice

Step 1: Adjust for nonresponse

Step 2: Achieve consistency of the 
weight system and reduce the variance
somewhat
But we recommend 
the Single-step procedure.

10,000    SI samples                                     
each of size     n = 300    drawn from                    
experimental population of size    N = 832,          
constructed from actual survey data :             
Statistics Sweden’s  KYBOK survey

Elements classified into four administrative 
groups;   sizes:   348, 234, 161, 89

Monte Carlo simulation
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Monte Carlo simulation

Information:   For every  k ∈ U,  we know  

• membership in one of  4  admin. groups      

• the value         of a continuous variable         
x = sq.root revenues

We can use all or some of the info.

Study variable:     y =  expenditures

kx

YYYAve W /])ˆ([  100  RelBias −=

[ ]∑
=

−=
000,10

1

2
)( )ˆ(ˆ

999,9
1Variance

j
WjW YAveY 810−×

000,10/ˆ)ˆ(
000,10

1
)(∑

=
=

j
jWW YYAve

Monte Carlo simulation
measures computed
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Estimator RelBias Variance

EXP   5.0 69.6 

Single-step -0.6    9.7 

Two-step  A -0.6    9.8 

Two-step  B -0.8    9.5 

Monte Carlo simulation ; logit response   

Monte Carlo simulation ; increasing exp response   

 
Estimator RelBias Variance

 
EXP 9.3 70.1 

Single-Step -2.4    8.2 

Two-step  A -2.3    8.3 

Two-step  B -3.0    8.0 
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Our conclusion

In practice there are no rational grounds

for selecting another method than

the Single-step procedure.
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2_2
Analysing the bias

remaining in the calibration
estimator

Important to try to reduce the bias ?
Most of us would say  YES, OF COURSE.

A (pessimistic) argument for a  NO :                 
There is no satisfactory theoretical solution;   
the bias cannot be estimated.
It is always unknown  
(because the response probabilities unknown)

The approach that we present not pessimistic.
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Important to try to reduce the bias ?

Yes.  It is true that the bias due to NR 
cannot be known or estimated.

But we must strive to   
reduce the bias .                                      
We describe methods for this.

Calibration is not a panacea.

No matter how we choose the aux. vector, the 
calibration estimator (or any other estimator) will 
always have  a  remaining bias .

The question becomes :   How do we reduce the 
remaining bias ?

Answer:  Seek ever better

We need procedures for this search             
(Sessions 2_3, 2_4, 2_5)

kx



3

Improved auxiliary vector

will (usually) lead to

reduced bias  ,  reduced variance

Interesting quantities are :

(a)  the mean squared error

MSE  =  (Bias)2 + Variance

(Bias)2 /{(Bias)2 + Variance}

and 

(b)  proportion of MSE due to squared bias
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true value  Y mean of  

distribution of 

Ŷ

Ŷ

bias

stand.dev. of Ŷ

A bad situation  :  bias  >  stand. dev.

Bad situation : squared bias  represents                
a large portion of the MSE

⇒ the interval

will almost certainly not contain the 
unknown value   Y for which we want to 
state valid  95%  confidence limits

)ˆ(ˆ96.1ˆ YVY ×±
estimated stand.dev.
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Variance                                                       
is often small (and tends to 0)

compared to 

squared bias (does not tend to 0)

We know :

Both  bias and  variance are theoretical 
quantities (expectations), stated in terms of 
values for the whole finite population

Variance can be estimated, but not the bias .

The bias of the calibration estimator

• The calibration estimator is not without bias.  
(Same holds for any other type of estimator.)

• The bias comes (almost entirely) from the NR, 
not from the probability sampling.

• If 100% response, the calibration estimator 
becomes the (almost) unbiased GREG estimator. 

• Both bias and variance of the calibration 
estimator depend on the strength of the auxiliary 
vector. Important: Seek powerful auxiliary vector.
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The bias of the calibration estimator

Recall the general definition :   

bias   =

expected value of estimator                  
minus

value of parameter under estimation

What is ‘expected value’ in our case ?

We assess expected value, bias and variance    
jointly   under  :

the  known sample selection p(s)           and
the  unknown response mechanism

The bias of the calibration estimator

)( srq

YYEY WpqW −= )ˆ()ˆ(bias

Our assumptions on the unknown 
are ‘almost none at all’.

)( srq
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YsYEEY WqpW −= )( )ˆ()ˆ(bias. 

The bias of the calibration estimator

Derivation of the bias is                                    
an evaluation in two phases :

Let us evaluate it !

Approximate expression is obtainable for             
any auxiliary vector                    
any sampling design

Before evaluating the bias in a general way 
(arbitrary sampling design, arbitrary aux. vector) 

let us consider a simple example .
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Example: The simplest auxiliary vector

drEXP yNY ;ˆ =
∑
∑

=
r k

r kk

d
yd

N

for all  k1== ∗
kk xx

Recommended exercise :                  
Use first principles to derive its bias !

Weighted respondent mean, expanded by  N

∑
∑

=
U k

U kk
U

y
y

θ
θ

;θ

)/ˆ(bias NYEXP UU yy −≈ θ;

∑= U kU y
N

y 1

theta-weighted mean

simple unweighted mean

Why approximation ?                                    
Answer: Exact expression hard to obtain.                   
It is a  close approx. ?        Yes.

We find
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The bias of the expansion estimator

The theta-weighted population mean
can differ considerably from                    
the unweighted population mean,         
(both of them unknown),                               
so  bias can be very large.                      
These means differ considerably         
when   y and   θ have high correlation.

)/ˆ(bias NYEXP yUScv ××≈ )(6.0 θ

where

UUScv θ/)θ( θ=

yUS

the coeff. of variation of  θ

the stand. dev. of   y   in U

Suppose the correlation                     
between  y and   θ is   0.6 .
Then simple analysis shows that
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If the response probabilities  θ
do not vary at all,  then

0)/ˆ(bias ≈NYEXP

As long as all elements have the same
response prob. (perhaps considerably < 1), 
there is no bias .

0θ/)θ( θ == UUScv

and

But suppose 

)/ˆ(bias NYEXP

This bias may not seem large, but the crucial 
question is :  How  serious is it compared with

1.0θ/)θ( θ == UUScv

Then

yUyU SS 06.01.06.0 =××≈

)/ˆ(stand.dev NYEXP ?
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21)/ˆ(Var yUEXP S
m

NY ≈

(a crude approximation; SI sampling assumed)

yUEXP SNY 033.0)/ˆ(stand.dev ≈

Suppose  m = 900 responding elements

compared with :

yUEXP SNY 06.0)/ˆ(bias ≈

0.0036/(0.0036 + 0.0011)   =  77 %

Then

(0.06)2/[(0.06)2 + (1/900)] =

Impossible then to make valid 
inference by confidence interval !

(Bias)2 /[(Bias)2 + Variance]  =
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We return to the                                                
General calibration estimator

For a specified   auxiliary vector xk

with  corresponding information X ,

let us evaluate its bias.

∑r kk yw=WŶ

The Calibration Estimator :  Its bias

kkk vdw =
with

)1( krkd xλ ′+=

( ) ( ) 1−∑∑ ′′−= r kkkr kk dd xxxXrλ′

matrix 
inversion 
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)ˆ(nearbias WY

Deriving the bias of the calibration estimator

requires an evaluation of

YsYEEY WqpW −= )( )ˆ()ˆ(bias

This exact bias expression does not tell us 
much. But it is  closely approximated
by a much more informative quantity called 

Comments on approximation:

All ‘modern advanced estimators’, 
GREG and others, are complex (non-
linear). We cannot assess the exact 
variance of GREG, but there is an 
excellent approximation. 

Likewise, for the calibration estimator, 
we work not with the exact expression 
for bias and variance, but with close 
approximations.
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Derivation of the bias :

Technique : Taylor linearization.            
Keep the leading term of the development ; 
for this term, we can evaluate the expected 
values in question.

≈)ˆ(bias WY )ˆ(nearbias WY

kU k eθ)θ1(∑ −−

θ;θ Ukkk ye Bx′−=

( ) ∑∑ −′= U kkkU kkkU yxxxB θθ 1
θ;

=)ˆ(nearbias WY

where

Calibration estimator
close approximation to its bias

with
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kU k eθ)θ1(∑ −−=)ˆ(nearbias WY

is important in the following

It is a general formula, valid for:          

• any sampling design

• any aux. vector

• it is a close approximation  (verified 
in simulations)

Comments

• Detailed derivation of nearbias, see the book 

• For given auxiliary vector, nearbias is the 
same for any sampling design, but depends on 
the (unknown) response prob’s

• nearbias is a function of certain regression 
residuals (not the usual regression residuals)

• The variance does depend on sampling 
design
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Comments

• The nearbias formula makes no distinction 
between “star variables” and “moon variables”

• In other words, for bias reduction, an x-variable is 
equally important when
it carries info to the pop. level (included in        )        
as when it carries info only to the sample level 
(included in        )

Surprising conclusion, perhaps.

But for variance, the distinction can be important.        

∗
kx

o
kx

( ) }{ˆˆ ;;; drdrUdrREGW BxxyNYY −+==⇒

Example: Let xk be a continuous aux. variable

( ) }{ˆˆ ;;;; drdrdsdrW BxxyNY −+=⇒

Nxdx s kkds ˆ/where ; ∑=

∑⇒ U kxN knownand

∑∑=⇒ s kks k xddN computableandˆ

• Info at population level :

• Info at sample level only :

The two estimators differ, but same  nearbias . 

),1( ′== ∗
kkk xxx

),1( ′== kkk xoxx



17

• Can nearbias be zero?  (Would mean that 
the calibration estimator is almost unbiased.)

Answer : Yes .

• Under what condition(s) ?

Answer : There are  2  conditions, each 
sufficient to give  nearbias = 0.

• Can we expect to satisfy these conditions 
in practice ?  

Answer:  Not completely. We can 
reduce the bias.

In words :  

under either of the follwing conditions:

Condition 1 :  The influence φ has        
perfect linear relation to the aux. vector

Condition 2 : The study variable  y has   
perfect linear relation to the aux. vector

Conditions for  nearbias =  0

0)ˆ(nearbias =WY
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0)ˆ( nearbias =WY if, for all   k  in  U,

k
k θ

1
=φ

for some constant vector λ

kxλ′+=1

nearbias = 0  if the influence φ has perfect
linear relation to the auxiliary vector :

Condition 1

Exercise : Show this !

1. The requirement                                  must 
hold for all k ∈ U.                                             

2.  It is not a model.  (A model is something 
you assume as a basis for a statistical 
procedure.) It is a population property.            

3. It requires the influence to be linear in        
4. If it holds, nearbias = 0

kk xλ′+=1φ

kx

Comments :
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nearbias =  0 if the study variable   y has 
perfect linear relation to the aux. vector

kky xβ′=

0)ˆ( nearbias =WY if,  for all   k  ∈ U,

for some constant vector β

Condition 2

Exercise : Show this !

is not a model.

It is a population property saying that    
nearbias = 0                                             

if the  y-variable has perfect linear relation     
to the aux. vector.

Uky kk ∈′= allforxβ

Condition 2
Note :
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gives regression estimator:

Example: auxiliary vector

nearbias = 0 if :

),1( ′== ∗
kkk xxx

Ukbxa kk ∈+= all, φ

( ) }{ˆˆ ;;; drdrUdrREGW BxxyNYY −+==

Condition 1

Condition 2Ukxy kk ∈+= all , βα
or if

Comment
We have found that  

1. if the influence φ has perfect linear relation         
to the aux. vector

2. if the y-variable has perfect linear relation to the 
aux. vector .

0)ˆ( nearbias =WY
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Comment

There are  many y-variables in a survey :           

• One for every socio-economic concept
measured in the survey

• One for every domain (sub-population) of interest

To have nearbias =  0  for the whole survey requires
that every one of the many y-variables must have
perfect linear relation to the auxiliary vector.                

Not easy (or impossible) to fulfill.

Comment

Therefore,
the first condition is the more important one

If satisfied, then

for every one of the many y-variables

0)ˆ( nearbias =WY
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Can the statistician

control

the remaining bias  ?

make nearbias smaller ?

Can the bias be controlled ?

We would like to come close to one or both of :  

1.  the influence φ has perfect linear relation 
to the aux. vector

2.   every y-variable of interest has perfect
linear relation to the aux. vector

We propose diagnosic tools (Sessions 2_3, 2_4).
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Questions that we shall consider in 
the following sessions :

What aux. vector should we use?
How do we evaluate different 
choices of aux. vector ?

It is possible to specify a constant vector  μ
such that kk allfor1=′xμ

A comment on auxiliary vectors

Almost all vectors we are interested 
are of the following type :
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′= ),1( kk xx

Example  1 :  A continuous  x-variable

kxkk allfor1011 =×+×=′xμ

′= )0,1(μTake

The property is present :

kγ=kx ′= )0,...,1,...,0(

Example  2 :  The classification vector

kk allfor1=′xμ

′= )1,...,1,...,1(μTake

The property is present :
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∑− U keθ

=)ˆ(nearbias WY

Equivalent expressions for  nearbias

( )UUU k BBx −∑ ′ θ;)(

(i)

(ii)

(iii) ∑ −U kkk yM )1θ(

We now comment on  (ii) ;     we need (iii) later .

kk allfor1=′xμfor the  x-vector type

( ) ∑∑ −′= U kkkU kkkU yxxxB θθ 1
θ;

( )UUU k BBx −∑ ′ θ;)(=)ˆ(nearbias WY

( ) ∑∑ −′= U kkU kkU yxxxB 1

weighted

unweighted

Expression (ii) :
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This shows  nearbias as a function of the 
difference between two regression coefficients

Interpretation: NR causes systematic error in the 
estimated regression relationship (reason: ‘non-
random selection’). We would like to estimate  the 
ordinary regression coefficient   BU ,  but because 
of NR we obtain an estimate of     BU;θ

( )UUU k BBx −∑ ′ θ;)(=)ˆ(nearbias WY

0andθ; == nearbiasBB UU

Uky kk ∈′= allforxβCondition 1:

⇒

Condition 2 : Ukkk ∈′= allforxλφ

0and =nearbias

⇒ ( ) 0θ;)( =−∑ ′ UUU k BBx

What is the nearbias under conditions 1 and 2  ?

(show this!)
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Comment on terminology

We do not need concepts such as 

MAR,   MCAR,   ignorable NR,                        
non-ignorable  NR

In our view : All situations non-ignorable.    
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2_3
Selecting the most

relevant auxiliary information

Auxiliary information can be used both

at the design stage

and

at the estimation stage
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Commonly used sampling designs

• Simple random sampling (SI) 

• Stratified simple random sampling 
(STSI)

• Cluster sampling

• Two-stage sampling

• Probability-proportional-to-size

The design stage

Two important steps in building the 
auxiliary vector: 

(i) making an inventory of potential 
auxiliary variables

(ii) selecting the most suitable of these
variables and preparing them for entry
into the auxiliary vector

The estimation stage
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Inventory of potential auxiliary variables

Example of an extensive data source:          
Sweden’s Total population register (TPR) : 
A complete listing of the population of 
individuals (around 9 million)
Some of the variables in TPR:

Unique personal identity number, name and 
adress, date of birth, sex, marital status, country 
of birth and taxable income. 

If the nonresponse is considerable and not 
counteracted by effective adjustment then

(i) the squared bias term is likely to dominate the 
MSE

(ii) the possibilies for valid statistical inference
are reduced; valid confidence intervals cannot
be computed

Recall: 
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Principle 1:  The auxiliary vector (or the 
instrument vector) should explain the inverse
response probability, called the response
influence

Principle 2: The auxiliary vector should explain
the main study variables

Principle 3: The auxiliary vector should identify
the most important domains

Guidelines for the construction of an 
auxiliary vector

Principle 1 fulfilled:

The bias of the calibration estimates reduced
for all study variables

Principle 2 fulfilled:

The bias is reduced in the estimates for the 
main study variables, and the variance is also
reduced
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Principle 3 fulfilled:

For the main domains, both bias and variance
will be reduced

The general formula for the nearbias (Session 2-2) 
can guide our search for a powerful auxiliary
vector.  It also answers the question: 

When is the nearbias = 0, for a given estimator ?

Let us look at some traditional estimators.

Standard specifications assumed, unless otherwise
stated.

The x-vector is a ’star vector’ in most of these
examples
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Prospects for zero nearbias
with traditional estimators

Expansion estimator:

Auxiliary vector: 

Ukak ∈=φ  allfor   

Zero nearbias if

1=kx

drEXP yNY ;ˆ =

or if(i)

(ii) Ukyk ∈α=  allfor   

Weighting class estimator:

Aux. vector

Zero nearbias if

Population weighting adjustment estimator:

kk γx =

ppk Uka ∈=φ  allfor   

∑
=

=
P

p
drpPWA pyNY

1
;ˆ

dpr
P

p
pWC yNY ;

1
ˆˆ ∑

=
=

(i) or if

(ii) ppk Uky ∈β=  allfor   

= class indicator vector

Moon vector for          , star vector forWCŶ PWAŶ
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Ratio estimator:

Auxiliary vector: 

Ukak ∈=φ  allfor   
Zero nearbias if

Instrument vector: 1=kz

kk x=x

∑= U
dr

dr
kRA x

y
xY

;

;)(ˆ

(i) or if

(ii) Uk xy kk ∈α=  allfor  

Separate ratio estimator:

Auxiliary vector: 

Zero nearbias if

Instrument vector: 

∑ ∑
=

=
P

p dr

dr
U kSEPRA

p

p
p x

y
xY

1 ;

;
)(ˆ

kkk x γx =

kk γz =

ppk Uka ∈=φ  allfor   (i)

(ii) pkpk Uk xy ∈α=  allfor  

or if
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Regression estimator:

Auxiliary vector: 

Zero nearbias if

),1( ′= kk xx

 kk bxa +=φ

( ) }{ˆ ;;; drdrUdrREG BxxyNY −+=

(i)

(ii)  kk xy β+α=

or if

Separate regression estimator:

Auxiliary vector: 

Zero nearbias if

( ){ }∑
=

−+=

=
P

p
drdrUdrp

SEPREG

pppp BxxyN

Y

1
;;;

ˆ

 kppk xba +=φ

),( ′′′= kkkk x γγx

or if(i)

(ii) pkppk Ukx y ∈β+α=  allfor  
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Two-way estimator:

Auxiliary vector: 

Zero nearbias if
 hpk ba +=φ

TWOWAYŶ

),( ′′′= kkk δγx

(i)

(ii)

or if

 hpky β+α=

(expression somwhat complicated)

γ indicates classes p=1,…, P; 
δ indicates classes h=1,…, H

Conclusion: 

Best suited for fulfilling  Principle 1:  
SEPREG or  TWOWAY

Best suited for fulfilling  Principle 2:       
The same two vectors

Worst :  For Principle 1, EXP and RA .    
But  RA is better than EXP for Principle 2.
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10,000    SI samples                                     
each of size     n = 300    drawn from                    
experimental population of size    N = 832,          
constructed from actual survey data :             
Statistics Sweden’s  KYBOK survey

Elements classified into four administrative 
groups;   sizes:   348, 234, 161, 89

Monte Carlo simulation

Monte Carlo simulation

Information:   For every  k ∈ U,  we know  

• membership in one of  4  admin. groups      

• the value         of a continuous variable         
x = sq.root revenues

We can use some or all of that info.

Study variable:     y =  expenditures

kx
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We used two response distributions, called:           
(1)  Logit
(2)  Increasing exponential            

Average response prob.: 86% (for both)

Response probability   θ increases                   
with  x and  with  y

Corr. between y   and θ :
≈ 0.70 (logit) ; ≈ 0.55 (incr. exp.)

Monte Carlo simulation

YYYAve W /])ˆ([  100  RelBias −=

[ ]∑
=

−=
000,10

1

2
)( )ˆ(ˆ

999,9
1Variance

j
WjW YAveY 810−×

000,10/ˆ)ˆ(
000,10

1
)(∑

=
=

j
jWW YYAve

Monte Carlo simulation
measures computed



12

21.70.5Two-Way Classification 
(TWOWAY)

8.1-0.2 Separate Regression 
(SEPREG)

11.80.7Separate Ratio (SEPRA)
9.5-0.6Regression (REG)

27.52.5Ratio (RA)

37.12.2 Population Weighting 
Adjustment (PWA)

59.42.2Weighting Class (WC)
69.65.0Expansion (EXP)

VarianceRelBiasEstimator

Monte Carlo simulation ; logit response   

20.30.5Two-Way Classification 
(TWOWAY)

7.4-0.8 Separate Regression 
(SEPREG)

11.32.0Separate Ratio (SEPRA)
8.1-2.7Regression (REG)

26.13.9Ratio (RA)

36.35.7 Population Weighting 
Adjustment (PWA)

57.75.7Weighting Class (WC)
70.19.3Expansion (EXP)

VarianceRelBiasEstimator

Monte Carlo simulation ; increasing exp. response   
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What do we learn from the simulations ?

Bias       when the auxiliary vector      
‘gets better’ (more informative)

↓

Variance also          ,  as expected↓
For ex., SEPREG clearly uses much 
more information than  EXP  or  RA

We want to be more precise about ‘informative’
This will follow .

The search for a powerful auxiliary vector

Principle 1

Tool 1.1:  Nonresponse analysis

Tool 1.2:  Bias indicator

Principle 2

Tool 2.1: Analysis of important target
variables

Tool 2.2: Indicator IND2

2q
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We have developed a new indicator, 
denoted , which takes into
consideration both Principle 1 and Principle
2.         is a product of and a factor
depending on the relation between the target
variable y and the auxiliary vector.

 1H

 ),(2
1 xyfqH ×=

 1H 2q

A new indicator (not yet published)

That is,

- Transforming the auxiliary variables

- Choosing a powerful instrument vector

- Analysing the distribution of the weights
(for ex.: any extreme weights?)

Some further tools
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Tools for Principle 1

 

Age group 18-34 35-49 50-64 65-79 

Response rate (%) 54.9 61.0 72.5 78.2 

 
 

Country of birth Nordic 

countries

Other 

Response rate (%) 66.7 50.8 

Tool 1.1:   Nonresponse analysis

Example 1:  The Survey on Life and Health

(postal survey;  Statistics Sweden)
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Income class (in 

thousands of SEK) 

0-149 150-299 300- 

Response rate (%) 60.8 70.0 70.2 

 
 

Marital status Married Other 

Response rate (%) 72.7 58.7 

 

 

Education level Level 1 Level 2 Level 3 

Response rate (%) 63.7 65.4 75.6 
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Conclusions from this nonresponse 
analysis:

- The response propensities vary quite a lot
between groups

- Without any weighting, one expects a 
disturbingly large nonresponse bias

- Some of the presumptive auxiliary variables 
are related, for example, income and education
level. What is the simultaneous effect? Should
both be used or just one?

 
Sex Male Female
Response rate  (%) 73.1 78.1 
 

Tool 1.1  Nonresponse analysis

Example 2:  The Swedish National    
Crime Victim and Security Study

(telephone interview survey)



18

 
Age group 16-29 30-40 41-50 
Response rate  (%) 76.8 74.6 75.0 
 
51-65 66-74 75-79 
76.2 76.1 71.0 

 
 
Country of birth Nordic 

countries 
Others 

Response rate  (%) 77.7 57.8 
 

 
Marital status Married Others 
Response rate  (%) 78.3 73.6 
 
 
Big cities/others Big cities Others 
Response rate  (%) 72.1 77.6 
 
 
Income (in 
thousands of SEK) 

0-149 150-299 300- 

Response rate  (%) 69.9 78.1 82.2 
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Conclusions from the nonresponse 
analyses: 

The two surveys show a very similar
response propensity structure.

This agrees with a general conclusion (seen
also in other surveys). But sometimes the 
survey topic (respondent´s interest in the 
topic, for ex.) can affect the nature of the 
response propensity.

We seek an indicator for Principle 1 that 
gives us information on the simultaneous
effect of the auxiliary variables.

2q

(Described in Session 2_4)
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Tools for Principle 2

Tool 2.1: Analysis of important target variables

Example:  The Survey on Life and Health

Four important dichotomous study variables 
(attributes) are :

(a) Poor health

(b) Avoiding staying outdoors after dark

(c) Difficulties in regard to housing

(d) Poor personal finances
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Auxiliary variable: Sex

Attribute Male Female

(a) 

(b) 

(c) 

(d) 

7.5 

7.8 

2.6 

19.6 

8.9 

21.1 

2.4 

19.8 

 

Attribute 18-34 35-49 50-64 65-79 

(a) 

(b) 

(c) 

(d) 

4.3 

11.8 

5.9 

31.0 

6.6 

11.4 

2.8 

26.6 

10.6 

14.3 

1.0 

12.5 

10.9 

23.4 

0.8 

9.6 

Auxiliary variable: Age class
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Attribute Nordic 

countries 

Other 

(a) 

(b) 

(c) 

(d) 

8.0 

14.7 

2.4 

19.2 

11.7 

18.3 

4.2 

28.5 

 

Auxiliary variable: Country of birth

Attribute 0-149 150-

299 

300- 

(a) 

(b) 

(c) 

(d) 

10.0

18.6

3.8

25.3

7.2

12.6

1.5

16.5

4.0

8.1

1.0

6.9

Auxiliary variable: Income group (in 
thousands of SEK)
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Attribute Married Other 

(a) 

(b) 

(c) 

(d) 

8.2

13.8

1.1

14.1

8.2

16.3

4.3

26.5

 

Auxiliary variable: Marital status

 

Attribute Level 1 Level 2 Level 3 

(a) 

(b) 

(c) 

(d) 

10.5

19.1

1.7

17.5

7.3

12.6

3.2

21.6

4.6

12.9

1.8

16.8

 

Auxiliary variable: Education level
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Conclusions from the analysis of important target 
variables:

- Sex important for explaining variable (b)

- Marital status important for variable (d) 

- Age class and country of birth important for most 
of the four variables

- Income group and education level are both 
important, but seem to give almost the same 
information

- Question arising : What is the simultaneous
effect of these aux. variables?

Thus, we seek an indicator for Principle 2 that 
can inform us about the simultaneous effect of 
the auxiliary variables.

Recall: The NR-bias of         will be small if
the residuals from the regression of  y on  x
are small.

WŶ
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IND2 = 
∑
∑

−

−
−

r dvrkskk

r kkskk
yyvd

yyvd
2

;

2

)(

)ˆ(
1                  

IND2 measures how close the residuals are to zero:

Tool 2.2: Indicator IND2

 =skv
where

 ( ) ∑∑ ′′= −
r kkskkr kkskkkk yvdvdy zxzx 1ˆ

and

 ( ) kr r kkkkks kk ddd zxzxx 1)(1 −∑ ∑∑ ′−+

Some empirical evidence follows in Session 2_5.

Further tools
Transforming a continuous auxiliary variable

• Forming size groups based on the variable 
values (often a very useful practice)

• Transforming the value of kx . We may prefer 

      kx  or kxln  
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We know that the near-bias is zero if  

kφ   = kzλ′+1  holds for Uk ∈ and some  

constant, non-random vector λ .  

Thus, we should try to find
”the best instrument vector” !

Choose a ”powerful” instrument vector

Further tools

Example: 

ν−= 1
kk xz

Suppose  x is a continuous aux. variable. 
Consider the auxiliary vector 

and an instrument vector of the form

kk x=x

where the value of  v is to be suitably determined
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If we believe that the response probabilities  
are constant through-out the population  
then 1=ν  is an appropriate choice. 

RA-estimator

If we believe that kφ  increases with 

kx  we should use a value 1<ν . 

The nearbias is zero if νφ −+= 11 kk xa
where  a is a constant

Analysing the weights

Some weights too large?

- Could make the estimate for some
domains too large

- The variance estimator may deteriorate

Some weights negative?

- Most users dislike negative weights

Further tools
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Our recommendations

(i) Make an inventory of potential aux. variables

(ii) Categorize the continuous aux. variables

(iii) Calculate q2 and IND2 for different aux. 
vectors

(iv) Calculate the weights for the ”best” aux. 
vector

(v) If some of the       are negative or ”too large”, 
drop the aux. variable that has the smallest
effect on  q2 (or on IND2).

kv

kv

Sample-based selection of auxiliary variables 
may affect important properties of the estimator

”The choice of stratification variables cannot be made 
solely on the basis of the available observations.  
Over or under-representation of some groups can  
mislead us about the relationship between the target  
and the stratification variable. There has to be  
additional information about the homogeneity  
of the target variable.” 

(Bethlehem, 1988)
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Examples of
sample-based selection of auxiliary variables

• collapsing of groups

• restricting or ”trimming” the weights

• avoiding near-colinearity by excluding
unnecessary auxiliary variables
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2_4
A bias indicator

Intuitively, the better the aux. vector  xk,

the better the calibration estimator :

Smaller bias ,  smaller variance .

• How can we analyze this more precisely?

• How do we construct the aux. vector ?

• We may have access to many aux. 
variables; how do we choose ?

• Primary objective here : reduce bias !
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C.E. Särndal and S. Lundström (2008):  
Assessing auxiliary vectors 
for control of nonresponse bias 
in the calibration estimator.   
Journal of Official Statistics,  24,  251-260

This session and the next are based on the article :

We consider  aux. vectors of the form:

kk allfor1=′xμ
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Expression (ii) :

=)ˆ(nearbias WY ( )UUU k BBx −∑ ′ θ;)(

Recall : We have seen three                 
expressions for nearbias

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∗

o
k

kk
x
xxRecall :

Now consider
expression  (iii)

∑ −U kkk yM )1θ(=)ˆ(nearbias WY
where

Mk is a scalar value, unknown, linear in  xk

k
U

U kkkU kkM xxxx
4444 34444 21

overdefinedvector

1)θ()( ∑∑ −′′=
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The value Mk depends 

on    the     aux.     vector

on  the response prob.   θk
but not on the  y-variable

Examination of  Mk , k ∈ U, helps 
understanding the bias 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∗

o
k

kk
x
xx

Ukkkk ∈′== all,θ/1 xλφ

1θ =kk M ⇒ nearbias = 0

kM kk allforφ=

Recall : nearbias = 0   if

For this ideal (non-existent) aux. vector, we have  

⇒
For a less than ideal aux. vector,                    
Mk is an optimal predictor of  φk ,                 
as we now show .

(exercise: show this !)

influence
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Properties of Mk

Property 1.   Mk is an optimal predictor 
(estimate) of the unknown influence  φk  

∑= r kkk ydY φ̂ˆ

as a good substitute for the unbiased 
(but unrealizable) estimator

∑= r kkk ydY φˆ

Proof : We want to predict (estimate) the 
influences, because this would give

Weighted LSQ prediction :

2)(θ∑ ′−= U kkkWSS xλφ

⇒ Predicted influence : kkk M=′= xλ̂φ̂

Let xk be a fixed aux. vector. Determine  φk
as a linear function of  xk , so as to minimize

Minimize WSS ;  find best λ, λλ ˆ,say =

Recommended exercise : verify the details !
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For the trivial aux. vector, kk allfor1=x

and kM Uk allforθ/1=

)()1θ(

)(nearbias

θ;

;

UUkkk

dr

yyNyM

yN

U −=−

=

∑
⇒

Mk is the best predictor (for the given 
aux. vector) of the influence  φk  .

We have concluded :

EXPdrW YyNY ˆˆ ; == (Expansion estimator)

=  weighted minus unweighted meanUU yy −θ;

∑
∑

=
U k

U kyk
Uy θ

θ
θ;weighted mean

N
U ky

Uy ∑
=unweighted mean

Recall notation
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Property 2.  Mean and variance of  Mk

UU kU k
U kk

U
NM

M
θ
1

θθ
θ

θ; ===
∑∑

∑
Weighted mean :

Weighted variance :

2
2

θ;2
θ; θ

)(θ
Q

MM
S

U k

UkU k
UM =

−
=

∑
∑

)notationsimpleris( 2Q
)( θ;θ;

2
UUU MMMQ −=

Properties of Mk

We have

)(nearbias
)ˆ(nearbias

;dr
W
yN

Y
)(

)1θ(

θ; UU

kkk
yyN

yMU
−

−
=
∑

Property 3.  The variance Q2 of the  Mk is 
approx. linearly related to the nearbias :

Suppose we compare 

with its simplest form

Properties of Mk

1)( =kx
WŶ )any(with kx

Consider the nearbias ratio :

EXPdr YyN ˆ; =

Objective : Choose  xk to make it small  !
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2
sup

2
1

Q

Q
−≈

Properties of Mk

2
supQ )θ/1)(θ/1( UUU −= φ

One can show (details not given here) :

)(nearbias
)ˆ(nearbias

;dr
W
yN

Y

where

110 2
sup

2
≤−≤

Q

QNote :

Ukkkk ∈′== all,θ/1 xλφ

is the value of  Q2 for the ideal (unattainable) case 

Conclusion : In the choice between different  
aux. vectors, we should select the one that

maximizes the variance kMQ theof2

But   Q2 cannot be computed ; the values  Mk
involve sums over the whole population  U , 
and contain unknown  θ

kMWe replace the by computable analogues 
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kr kkks kkk ddm xxxx 1)()( −∑∑ ′′=

Sample-based analogue of Mk

Replace unknown population sums in  Mk
by corresponding computable estimates

⇒
This scalar value, defined for k∈s, depends

• on the sampling design

• on the outcome of the response phase

• on the choice of aux. vector  xk

kr kkks kkk ddm xxxx 1)()( −∑∑ ′′=

Sample-based analogue of  Mk

2
;

2
; )(1

drkr k
r kdrm mmd

d
S −= ∑∑

We can compute the (weighted) mean and 
variance over  r :

For k ∈ s,  we can compute

kr k
r k

dr md
d

m ∑
∑

=
1

;
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An analysis shows 

∑
∑

=
r k

kr k
dr d

md
m ; rateresponse(weighted)

1
==

∑
∑

r k
s k

d
d

Hence  the mean of  mk is the same for every 
aux. vector xk.  But the variance depends on 
the aux. vector  (short notation q2 ) :

22
;

2
; )(1 qmmd

d
S drkr k

r kdrm =−= ∑∑

2q is a variance, hence non-negative

)( ;;;
2

drdsdr mmmq −=

Some properties of 2q

4.  When new variables are added to the aux. 
vector, the effect is an increase in the value of  q2

(compare  R2 in regression analysis).

1.
2.    Alternative expression :

3.  The simple aux. vector xk =1 gives  q2 = 0
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Practical use of 2q
For low bias, choose  xk to make  q2 large.          
The reason:  The bias ratio is

)(nearbias
)ˆ(nearbias

;dr
W
yN

Y
2
sup

2
1

Q

Q
−≈

where  Q2 is the (unknown) variance of  Mk .               
Ideally : choose  xk to make Q2 large.

Now  q2 is an estimator of Q2

⇒ Choose  xk so as to make                                        
the computable ‘indicator’ q2 large.             

Thus  q2 is a useful tool for comparing x-
vectors, to find “the best one” (the one giving 
lowest bias) 

We can regard  mk as a “proxy value” for the 
unknown influence.

The more the  mk vary (within limits), the better 
the prospects for small bias in the calibration 
estimator.
We call  q2 a  “bias indicator”
Empirical illustrations 
in the continuation of this session.
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Comparing different aux. vectors

• Stepwise forward
Start with the simple vector  xk = 1;           
add one  x-variable at a time

Suppose a supply of  x-variables is available 
for the survey.  Our objective : Build a good 
aux. vector from this supply.

• Stepwise backward
Start with all available  x-variables ;   
eliminate one at a time

Procedure for comparing different aux. vectors
Stepwise forward

Start with the simple vector  xk = 1;           
add one  x-variable at a time

Step 1. Compute  q2 for all vectors of 
the form  (1, xk), where  xk is one of the 
available x-variables. If there are  J
available x-variables, we get  J values of  
q2. Keep the x-variable that gives the 
largest of these values.  
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Procedure for comparing different aux. vectors

Stepwise forward

Step 2. Add a second  x-variable, 
namely, the one that gives the largest 
increment among the   J – 1   computed 
new values of q2. 

And so on, in steps 3,  4,  …

rλ′

kkk vdw = )1( krkd zλ ′+=

( ) ( ) 1−∑∑ ′′−= r kkkr kk dd xzxX

A note on the case where the weights are 
computed with an instrument vector.

where

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=
∑
∑ ∗

s kk

U k
d ox

xX⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∗

o
k

kk
x
xx

∑= r kkW ywŶThen

;

instrument

with



14

( ) ( ) kr kkkr kksk ddm zxzxX 11 −∑∑ ′′−+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=
∑
∑ ∗

s kk

s kk
s

d

d
ox

xX

Then we define instead mk as

Then compute  q2 as the variance of these 
values mk ; then proceed as before, with 
stepwise construction of the aux. vector .

with

)(nearbias
)ˆ(nearbiasratiobiasthe

;dr
W
yN

Y
A note on the approximation of

What is the size of   Δ ?

)ˆ(nearbias WY

UU

UU
UkUkk

yy
yyE

θ/1
)( θ;

−

−
−−−=

φ
φφ

Δ+−×= )1()(nearbias 2
sup

2
;

Q

QyN dr

kkU k EM∑=Δ θ

More precisely, we have

We have

with
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2_5
A bias indicator, 

continued

2
supQ

Recall from Session 2_4 :

)(nearbias
)ˆ(nearbias

r
W
yN

Y

where

Δ+−= )1( 2
sup

2

Q
Q

is a constant,

 Δ is a residual term
2Q is a function of kx  and kθ  

is an estimator of  Q22q
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is computed from the values xk ;  k ∈ s.          
It does not depend on the  y-variable.

2q

Does       order the aux. vectors in a 
”correct” way

• on average ?
• for every possible sample?

Important practical questions :
2q

The indicator

Comparing aux. vectors : We have 
reason to believe that the vector with the 
largest q2 gives the smallest bias. 

and

 Δ is not always small (depends on y) 

No, not always because…

Let us look at some simulations.

2q is subject to sampling variability 
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Population of size N = 832, derived from 
Statistics Sweden’s  KYBOK survey   
(see Session 2_3).

Information:   For every  k ∈ U,  we know  
• membership in one of  4  admin. groups      
• the value of a continuous variable         

x = sq.root revenues

Study variable:     y =  expenditures

Monte Carlo simulation

We used two response distributions, called:           
(1)  Logit
(2)  Increasing exponential            

Average response prob.: 86% (for both)

Response probability  θ increases                   
with  x and  with  y

Corr. between y   and θ :
≈ 0.70 (logit) ; ≈ 0.55 (incr. exp.)

Monte Carlo simulation
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YYYAveRelBias W /])ˆ([  100  −=

= Average of

210×= Average of IND2

000,10/ˆ)ˆ(
000,10

1
)(∑

=
=

j
jWW YYAve

I. Monte Carlo simulation

32 10×q2Aveq

 2AveIND

Measures computed as averages over 10,000 
repetitions  (s, r) ;  size of every s : n =  300

Estimator 2Aveq  2AveIND RelBias 

EXP 0.0 0.0  5.0 
WC 2.7 43.3  2.2 
PWA 2.7 43.3  2.2 
REG 2.2 83.4 -0.6 
SEPREG 6.0 88.1 -0.2 
TWOWAY 5.7 67.4  0.5 
 

Response distribution: Logit

The estimators are described in Session 1_8
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Estimator 2Aveq  2AveIND RelBias 

EXP  0.0   0.0  9.4 
WC  3.4 42.3  5.7 
PWA  3.4 42.3  5.7 
REG  9.4 81.7 -2.7 
SEPREG 18.3 88.1 -0.8 
TWOWAY 18.0 67.1  0.5 
 

The estimators are described in Session 1_8

Response distribution: Increasing exponential

This simulation shows :

• a clear tendency (although not a perfect 
relationship) that larger values of  Aveq2

accompany the estimators with small bias

• that the relationship between y and    has an 
effect on the bias. 

Example:              is larger for WC (and PWA) 
than for REG , but the RelBias is smaller. This is 
explained by the fact that  AveIND2 is smaller
for WC (and PWA) than for REG. 

2Aveq

x
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II. Monte Carlo simulation
For every possible sample, does q2

correctly order the auxiliary vectors?
We examine four of the six estimators:  SEPREG, 
REG, WC and EXP.                                                
q2 is random; it depends on the outcome  (s,r).    
For every outcome, we can rank the four estimators 
by their value of  q2. The perfect ordering would be 

)()()()( 2222 EXPqWCqREGqSEPREGq ≥≥≥

because this is the ordering based on the  
absolute value of  RelBias

Reasons for using only 4 of the  6  
estimators in the study : 

(i) WC and PWA have the same nearbias

(ii) SEPREG and TWOWAY have almost
the same nearbias
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For each repetition (s,r), we rank order the 
estimators by the size of  q2, and assign rank 
values : 1 (to the estimator with the largest q2),  
2, 3  and  4 (to the estimator with                      
the smallest q2).                             

We then compute the average rank ordering
(AveOrd) over the 10,000 repetitions.                    
The results are shown in the following pictures.

Estimator 2Aveq  2AveIND RelBias AveOrd  

EXP 0.0 0.0  5.0 4.00 
WC 2.7 43.3  2.2 2.40 
REG 2.2 83.4 -0.6 2.60 
SEPREG 6.0 88.1 -0.2 1.00 

Response distribution: Logit
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Response distribution: Increasing exponential

Estimator 2Aveq  2AveIND RelBias AveOrd  

EXP 0.0  0.0 9.4 4.00 
WC 3.4 42.3  5.7 2.97 
REG 9.4 81.7 -2.7 2.03 
SEPREG 18.3 88.1 -0.8 1.00 
 

This simulation experiment shows:

• SEPREG always (in every sample) receives 
rank 1 (agreeing with the fact that its bias is 
the smallest) 

• EXP always receives rank 4 (and it has the 
highest bias)

• Between WC and REG, the pattern is not 
clear-cut. One important reason is that the 
relationship between y and      has an effect. x
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Use of the bias indicator in
the Swedish National Crime Victim and 
Security Study

2q

Sampling design:  STSI  of  10,000  persons 
(strata:  21 regions (”län”) × 3 age groups) 

Survey objective: Measure trends in certain
types of crimes, in particular crimes against
the person.

Overall response rate: 77.8 %

(a telephone interview survey)

Statistics Sweden’s data base LISA contains
many potential auxiliary variables.            

For example:

Type of family, number of children in different 
age groups, education level, profession, branch of 
industry, number of days with illness, number of 
days of unemployment, number of days in early
retirement pension, income of capital,  and so on

How do we select ?
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Preparation:

(i) An initial set of potential auxiliary
variables was selected by a subjective
procedure

(ii) Aux. variables were used at the sample
level (moon variables)

(iii) Continuous variables are used as grouped; 
all variables used are then grouped.

The use of        as a tool for stepwise
forward selection of variables: 

- In each step, the auxiliary vector
expands by adding the (grouped) variable 
causing the largest increase in 

- Variables enter in the ”side-by-side”
manner (or ”+”)

2q

2q
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Step 
Auxiliary variable 

entering 
Number 

of groups 
Value  of 

1000× 2q  
0 ------ -----        0 
1 Country of birth 2 20.0 
2 Income group 3 27.6 
3 Age group 6 31.3 
4 Gender 2 35.1 
5 Marital status 2 38.6 
6 Region 21 40.7 
7 Family size group 5 41.4 
8 Days unemployed 6 41.9 
9 Urban centre dweller 2 42.3 
10 Occupation 10 42.7 

 

Results

• Successive increases in  q2 taper off (as 
expected).

• It seems hardly motivated to go beyond 
the sixth variable (region)

Observations :
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The final choice of auxiliary vector was :
Region+gender+age group+country of birth+

+ income group+urban centre dweller

Principles that also played a role :

(i)The auxiliary vector should be robust. The survey will be 
conducted yearly; the client prefers having the same 
vector over time. 

(ii) The auxiliary vector should contain region and age
group, because they identify the most important domains. 

(iii) An auxiliary vector should well explain the (main) study
variables
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2_6
Variance and variance

estimation for calibration
estimators

NR causes both 
• a problem due to bias

and 
• a problem with variance estimation 

(which we now discuss)
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Recall from Session  1_5 :

The accuracy has two parts :

≈)ˆ( Wpq YMSE
4444 34444 21321

NR

sWpWqpp BEsYVEYV

todue

2

sampling
 todue

)()ˆ()ˆ( ++

A serious problem: the bias component 
may be large

)( 2
sWp BE

is the full response estimatorŶ

The variance of the calibration estimator

the variance is the sum  of           
two components :

• Sampling variance )ˆ(YVV pSAM =

)ˆ( sYVEV WqpNR =

WŶ

is the full response estimator

• Nonresponse variance

Assuming that ( ) 0)ˆˆ( =−= sYYEB WqsW

Ŷ
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The variance of the calibration estimator

is the additional variance incurred by 
getting fewer observations than desired. 

NR increases variance.                

We can always ‘oversample’ to counterbalance 
the increased variance .

The more serious consequence of  NR  is          
the systematic error  (the bias). 

NRV

±WŶ )ˆ(ˆ2/ WYVzα

Objective:                                       
Obtain valid confidence statements

96.12/ =αz

We can count on approx. normal distribution,     
but a non-negligible bias would distort the 
confidence. The interval may become invalid.

gives ≈ 95 % confidence .

so that

with
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±WŶ )ˆ(ˆ96.1 WYV

Objective:                                       
Obtain valid confidence statements

can give ≈ 95 % confidence

only if                    fairly small     
compared with the estimated stand.dev

It is obvious  that

)ˆ(bias WY
)ˆ(ˆ WYV

true value  Y mean of  

distribution of WŶ

bias

stand.dev. of

A bad situation  :  bias  >  stand. dev.

In this case, coverage of  conf.int. ≈ 0

WŶ

WŶ
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We proceed under the assumption that we have 
succeeded in reducing  the NR bias to modest 
levels (by the methods seen in earlier sessions).          
We shall construct an estimator of                     
the variance )ˆ(ˆ WYV

)ˆ()ˆ( sYVEYVVV WqppNRSAM +=+

by estimating each of the two components :

NRSAM VV ˆandˆ

We create an estimator of each component ,

=)ˆ(ˆ
WYV

then add them to get an                 
estimator of total variance :

NRSAM VV ˆˆ +

We do this under very general conditions :

• any sampling design 

• any auxiliary vector ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

∗

o
k

k
k x

x
x
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A dilemma                                    
for the variance estimation

Estimating the variance components      
runs into the same problem as the point 
estimation :                                               
The  y-data available only for the response 
set are ‘not representative’, because of  
non-random NR. 

Unknown influences kk 1/θ=φ

Comment

Variance estimation
is a more sensitive issue        

than point estimation .

Variance implies squared numbers;        
more sensitive to weighting . 
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An approach to variance estimation

Had the influences                                         
been known, we could have used                    

the two-phase GREG estimator

kr k
k

k ygd∑ θθ
1=phGREGY 2ˆ

Given that the               are known, we know 
the expression for the variance, and how to 
estimate it.

kθ

kk 1/θ=φ

kk
k

k ygdr∑ θθ
1

=phGREGY 2ˆ

We note now that                                 
the two-phase GREG estimator

kr kk yvd∑=WŶ

is equal to the calibration estimator

if kkk v== θ/1φ
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The proposed variance estimator for 
builds on this identity with  the               
two-phase GREG estimator

WŶ

phGREGY 2ˆ

The known formula for )ˆ( 2 phGREGYV

kθ/1

by the adjustment factor  vk
(already computed for the point estimator) .

has two components. In those 
components, we replace

We thus obtain an ‘ad hoc’ estimator 
of each component
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( ) ( ) 1−∑∑ ′′−= r kkkr kk dd xxxXrλ ′

Recall: krkv xλ ′+= 1

where

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∗

o
k

kk
x
xxand

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=
∑
∑ ∗

s kk

U k

d ox

x
X;

The components will contain two types of  
residual (but no regression is ever fitted). 
One residual for each component.                         
The residuals reflect the available 
information. 

NRSAM VV ˆandˆ

NRSAM VV ˆˆ +

The procedure gives

Adding them : =)ˆ(ˆ
WYV
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Recall :     Auxiliary information statement

Set of units

Population  U

Sample   s

Response set   r

Information

known∑ ∗
U kx

skk ∈known,ox

rkkk ∈∗ known,and oxx

oo
dvrkdvrkkk ye ;

/
;

/
ˆ BxBx −−= ∗∗

The residuals for NR variance component are
adjusted for both kinds of aux. info

Residuals for Sampling variance component are 
adjusted only for the “population info” : 

∗∗∗ −= dvrkkk ye ;
/

ˆ Bx

For details, see the book .
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( ) ( )∑∑ −′ r kkkkr kkkk yvdvd xxx 1=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

∗

o
;

;
;

dvr

dvr
dvr B

B
B

The regression coefficient is computed as

Note the weighting : kkvd

kv kk θ/1=φa proxy for the unknown

NRSAMW VVYV ˆˆ)ˆ(ˆ +=

To illustrate the general formula

it is a good idea to note what the expressions 
look like in a familiar situation :

• STSI sampling

• each stratum used as a group           
for NR adjustment.

Procedure “simple expansion by stratum”
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′),...,,...,( 1 Hkhkk γγγ
′= )0,...,1,...,0(

=== ∗
kkk γxx

STSI; each stratum an adjustment group.

The “1” indicates the stratum to which  k  belongs

;
h

h
k n

Nd =

The general formulas give the weights 

STSI; each stratum an adjustment group.

;
h

h
k m

nv =
h

h
kkk m

Nvdw ==

In stratum h ,                                                 
nh are sampled from  Nh by  SI sampling   

mh out of  nh are found to respond

Recommended exercise : Derive  vk in this case!
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∑
=

−≈
H

h
yrhhhSAM h

S
Nn

NV
1

22 )11(ˆ

STSI; each stratum an adjustment group.

2
hyrS = y-variance computed in hr

The general formulas for the estimated variance 
components give easily understood expressions :

Estimated sampling variance :

(the response set in stratum  h)

∑
=

−≈
H

h
yrhhhNR h

S
nm

NV
1

22 )11(ˆ

∑
=

−≈
H

h
yrhhh h

S
Nm

N
1

22 )11()ˆ(ˆ
WYV

STSI; each stratum an adjustment group.

Estimated NR variance :

Estimated total variance :

Makes good sense. It is like “taking mh from nh”

hhhhhh NmnmNn
11)11()11(:Factors −=−+−
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The following pictures show                           
abstract and lengthy general formulas.

They are of particular interest for the specialist in 
variance estimation.

The practitioner wants to know ‘if it works’.

The answer is ‘yes’. Software is available, for ex.: 
CLAN97 .   

General formulas                               
for estimated variance components

( ) )ˆ)(ˆ( ∗∗∑∑ − llll evevddd kkr kk

2)ˆ()1()1( ∗−−−∑ kkkkr k evvdd

Estimator of  sampling  variance

=SAMV̂

∗∗−= dvrkky ;
/
Bx∗

kê
with
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∑ −r kkkk edvv 2)ˆ()1(

Estimator of   nonresponse  variance

=NRV̂

oo
dvrkdvrkky ;

/
;

/
BxBx −− ∗∗

=′− dvrkky ;Bx=kê
with

==∗
kk ee ˆˆ

The special case

( )∑∑ ∗
−

∗∗
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r kkkkr kkkk yvdvd xxx

/ 1/∗− kky x

∗= kk xx

(only population info)
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This variance estimation, although not perfect 
in all respects, has been shown to work well 
(see simulations in the book) .

Caution: Variance estimates are occasionally 
unstable, can be sensitive to ‘large weights’.
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2_7
Estimation in the presence
of both nonresponse and 

frame imperfections

Overcoverage Undercoverage)( PF UU − )( PUU −

”Persisters”
)( FP UUU ∩=

Frame population: FU   Target population: U 
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Frame population: FU   
Size: FN   Target population: U 

Size: N 

Sample: Fs  
Size: Fn  

Pr

Po

Po\
Pr\

∪= PF oo Po\  

Not a trivial step to accomodate the third
kind of error and derive a firmly established
methodology!

Few ”conventional methods” to compare with.

The estimation procedure needs to deal
simultaneously with sampling error, 
nonresponse error and coverage error.
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Problems:

• the absence of observed y-data from the 
undercoverage set

• the absence of correct auxiliary vector
total for U

• difficulties of decomposing the 
nonresponse set         into its subsets
and        , for example, identifying the 
elements that need imputation

Fo
Po\

Po

Two procedures for estimating UY

(i) by the sum of (a) an estimate of the persister

total          and (b) an estimate of the 

undercoverage total

(ii) by direct estimation of the target population 
total   

PUY

PUUY −

UY
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i) a. Estimation of the persister total

The persister set           is a domain of         

and the corresponding response sets are          

and    

PUY

PU FU

Pr
∪= PF rr Pr\  

⎩
⎨
⎧ ∩=∈

=
                 otherwise       0

  if     FPk
Pk

UUUky
y

Let us define

=WUPŶ  ∑ ∑=F Pr r kkPkk ywyw  

kkk vdw =where and

( ) ∗−∗∗∗∗ ∑∑∑ ′′−+=

=

kr kkkr kkU k

k

FFF
dd

v

xxxxx
1

)()(1
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WUPŶ  ∑ ∑
= +

=
H

h
r k

PhPh
Fh

Ph
y

mm
N

1 \
 = 

= ∑ ∑
=

H

h
r Pk

Fh
Fh

Fh
y

m
N

1
 

Ex. A commonly used estimator of the 
persister total 

FU   is divided into strata, FhU , Hh ,...,1=  
STSI:            from           ;          respondFhn FhN Fhm

Aux. vector: kkk γxx == ∗

PUUY −

i) b. Estimation of the undercoverage total

In the book we do not suggest any particular
method for estimating the undercoverage
total. 
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ii) Direct estimation of the target population 
total UY

∑= Pr kkUW ywŶ

kkk vdw =
where

and

Let denote an approximation of X~ ∑ ∗
U kx

( ) ∗−∗∗∗ ∑∑ ′
′
⎟
⎠
⎞⎜

⎝
⎛ −+=

=

kr kkkr kk

k

PP
dd

v

xxxxX
1

)(~1

∑ ∑
=

=
H

h
r k

Ph
Fh

UW Ph
y

m
NY

1
ˆ

Ex. A commonly used estimator of the target
population total 

FU   is divided into strata, FhU , Hh ,...,1=  

STSI:            from           ;          respondFhn FhN Fhm

Aux. vector: kkk γxx == ∗
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Variance estimators

are derived with the aid of proxies for

kk θ/1=φ

Let us look at the two cases

(i) Estimation of the persister total

and

(ii) Direct estimation of the target
population total

Variance estimation

Case i) Estimation of the persister total

kk v=φ̂

where

( ) ∗−∗∗∗∗ ∑∑∑ ′′−+= kr kkkr kkU kk FFF
ddv xxxxx

1
)()(1
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Ideal: Calibrate from           to

But impossible if is not identified

Surrogate procedure: Calibrate from         to 

Pr PP or ∪

Po

Fr FU

(1) kk v=φ̂

where

( ) ∗−∗∗∗∗ ∑∑∑ ′′−+= kr kkkr kkU kk FFF
ddv xxxxx

1
)()(1

Variance estimation

Case ii) Direct estimation of the target
population total (two alternatives)
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(2) Pkk v=φ̂

where

∗−∗∗∗
∪

∗ ′
′

−+= ∑∑∑ kr kkkr kkor kk PPPP
ddd xxxxx 1)( )()(1

Pkv   = 

A case study

The survey on ”Transition from upper secondary
school to higher education”

We call it the School Survey.

Important study variables: 

(a) The intentions to pursuing studies at university

(b) The university programmes viewed as the most
interesting
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Ex. The School Survey

: The third-year students year t

: The second-year students year t-1

FU

U

FU
U

WUPŶ  ∑ ∑
= +

=
H

h
r k

PhPh
Fh

Ph
y

mm
N

1 \
 = ∑ ∑

=

H

h
r Pk

Fh
Fh

Fh
y

m
N

1

The estimator used before the redesign

(i) The overcoverage is considerable greater
than the undercoverage

(ii) The response propensity is very low among
nonpersisters

At first look one would believe that it is an 
underestimation, but it turns out to be an 
overestimation for the following reasons: 
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The solution:

We discovered a good approximation        

of                 and estimated the target

population total by the direct estimation
method

X~

∑ ∗
U kx

Aux. variables:

-”final mark” at the end of grade 9

- parental variables: level of education, income
and civil status

Some results

• The estimates of totals undergo
considerable change

• Estimates of proportions undergo
little change

• The estimated variances for 
proportions were not much reduced
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2_8
Summing up

The course has presented ‘a general way of thinking’
about estimation in sample surveys with NR and 
frame imperfections :                    

Estimation by calibration

As a result, instead of a few specific (‘traditional’) 
estimator formulas,  we have seen a general way to 
produce estimators ;                                            
we have focused on the question :                          
how do we choose an appropriate auxiliary vector, 
with the corresponding auxiliary information.
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The approach is simple to explain to users.       
The approach relies on important statistical 
concepts, but a fairly limited  number of concepts. 

Computationally, the approach is not highly 
complex or demanding.

We do believe that survey methodologists (in 
particular) need to have a solid understanding of 
the theory behind the approach. 

As a result, this course has examined the theory in 
some detail;  a number of theoretical expressions 
have been presented. 

The course has emphasized that the key to 
“conclusions of acceptable quality” in a survey 
(with a perhaps considerable NR) is to identify 
powerful auxiliary information
for the calibration. 

We have specified some tools that are useful in 
this search.
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We hope you enjoyed the course !

Thank you for listening !



1

Exercises

Appendix

A scenario : Someone in your organization is 
seeking your opinion on a survey with NR. He or 
she says: “With a sample size of 1,500, we got 
1,000 responses, so we still have a lot of data to 
base our statistics and our conclusions on.  I do not 
think the NR is a problem.”

Formulate your response to the person 
making this statement.

Exercise 1
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A scenario : As a methodologist, you are called 
upon to discuss survey NR treatment with a user in 
your organization. More specifically, you need to : 

• Convince the user about the need for NR bias 
adjustment

• Explain to the user  (a) the favourable effects of 
calibration, and (b) the nature and the properties of 
the calibrated weights

Formulate your responses to the user.

Exercise 2

The simulation experiment in Session 1_2 
ends with a table titled “Coverage rate (%) for 
different samples sizes …” Explain (with the 
aid of basic statistical concepts) why, as a 
result of the NR,  the coverage rate drops 
when the sample size increases, other things 
being equal.

Exercise 3
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Show that the calibrated weights are 

The simplest auxiliary vector

∑
=

r k
kk d

Ndw

1== ∗
kk xx

Consequence for SI sampling : 
m
N

m
n

n
Nwk ==

m = number of respondents
See Session 1_8

Exercise 4

∑
=

=
P

p
dprpPWA yNY

1
;ˆ

Start from the general formula for the 
calibrated weights. Take

== ∗
kk xx kγ

∑=
pr kpkk dNdw /Show that the weights are

for  k in group  p,  so that the estimator becomes

See Session 1_8

Exercise 5
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Start from the general formula for  the 
calibrated weights. Take

kγ
Show that the weights are

for  k in group  p . 

For SI sampling :

== o
kk xx

p

p
k m

n
n
Nw =

∑∑=
pr kps kkk dddw )/()(

See Session 1_8

Exercise 6

kkk vdw =Consider the weights

krkv zλ′+=1

( ) ( ) 1−∑∑ ′′−=′ r kkkr kkr dd xzxXλ

where zk is an instrument vector

where

∑∑ = U kr kkw xx

Show that, for any  zk,  these weights satisfy 
the calibration equation

See  Session 1_7 

Exercise 7
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Invariant calibrated weights are obtained in the 
following situation:
• STSI with strata pU

Then the initial weights
ppkk nNdd /==α

and
ppppkk mNmndd /)/( =×=α

give the same calibrated weights,
namely

=  stratum identifier
;  np from  Np ; p = 1,…,P

ppk mNw /=

Show this !
See Session  1_7

Exercise 8

 *
kkk xxz ==•

)/ˆ(bias NYEXP yUScv ××≈ )(6.0 θ

where

UUScv θ/)θ( θ=

yUS

the coeff. of variation of  θ

the stand. dev. of   y   in U

Suppose the correlation between  y and   θ
is 0.6 . Then show that

See Session 2_2

Exercise 9
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Show that

kU k eθ)θ1(∑ −−=)ˆ(nearbias WY

becomes  =   0 if 

kxλ′+=1kφ

holds for all   k in  U
and some constant vector λ

See Session 2_2

Exercise 10
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