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Welcome to this course
with the title :
Calibration of Weights in Surveys

with Nonresponse
and Frame Imperfections

The title of the course
suggests two objectives :

e To study calibration as a general method for
estimation in surveys; this approach has
attracted considerable attention in recent years

» A focus on problems caused by nonresponse :
bias in the estimates, and how to reduce it




Key concepts

Finite population U :

N objects (elements) : persons,
or farms, or business firms, or ...

Sample s:
A subset of the elementsin U : scU
Sampling design :
How to selecta sample s from U
or, more precisely, from the list
of the elements in U (the frame population)

Key concepts

Probability sampling :
Every element in the population has
a non-zero probability
of being selected for the sample

In this course we assume that
probability sampling is used.




There is a well-defined survey objective .
For ex., information needed about employment :
How many unemployed persons are there

in the population?

Study variable : vy
with value y,=1 if k unemployed
Y, =0 if k notunemployed

‘Unemployed’ is a well-defined concept (ILO)
Number of unemployed to be estimated :

N
Yk = 2%k =2 Yk
1

k= keU

Key concepts

A survey often has
many study variables (y-variables) .

» Categorical study variables:

Frequently in surveys of individuals and
households (number of persons by category)

» Continuous study variables :
Frequently in business surveys (monetary
amounts)




Key concepts

There may exist other variables whose values are
known and can be used to improve the estimation.

They are called auxiliary variables.

Calibration is a systematic approach to the use of
auxiliary information.

Key concepts

Auxiliary variables play an important role
* in the sampling design (e.g., stratification)
* in the estimation (by calibration)

In this course we discuss only how aux.
information is used in the estimation.




Key concepts

Ideal survey conditions :

* The only error is sampling error.

 All units selected for the sample
provide the desired information
(no nonresponse)

» They respond correctly and truthfully
(no measurement error)

» The frame population agrees with
the target population
(no frame imperfections)

This course

Ideal conditions :
They do not exist in the real world..
But they are a starting point for theory.

Session 1 4 of this course discuss uses of aux.
information under ideal conditions.

Objective : Unbiased estimation; small variance.




This course

Nonresponse (abbreviated NR) :
All of those selected for the sample
do not response, or they respond to
part of the questionnaire only

A troubling feature of surveys today:
NR rates are very high.
‘Classical survey theory’ did not need
to pay much attention to NR.

This course

Most of this course - Sessions1 5 to 2 6 -
Is devoted to the situation :
sampling error and NR error

Objective :
Describe approaches to estimation ;
Reduce as much as possible
both bias (due to NR) and variance




This course

In the concluding Session 2_7 we add another
complication :

Frame imperfections : The target population is
not identical to the frame population

Not discussed in the course:

Measurement error : Some of the answers
provided are wrong

Research on NR in recent years

Two directions :

Preventing NR from occurring (methods from
behavioural sciences) - We do not discuss this

Dealing with (‘adjusting for’) NR once it has
occurred (mathematical and statistical sciences) ;
the subject of this course.




Categories of NR

 Item NR : The selected element responds to some
but not all questions on the questionnaire

e Unit NR : The selected element does not respond
at all ; among the reasons :

refusal, not-at-home, and others

Basic considerations for this course

* NRis anormal, but undesirable feature of
essentially all sample surveys today

* NR causes bias in the estimates

» We must still make the best possible estimates

» Bias is never completely eliminated, but we
strive to reduce it as far as possible

« Small variance no consolation, because
(bias)? can be the dominating part of MSE




Why is NR such a serious problem ?

The intuitive understanding : Those who happen to
respond are often not ‘representative’ for the
population for which we wish to make inferences
(estimates).

The result is bias : Data on the study variable(s)
available only for those who respond. The
estimates computed on these data are often
systematically wrong (biased), but we cannot
(completely) eliminate that bias.

Consequences of NR

o (bias)? can be the larger part of MSE
* NR increases survey cost; follow-up is expensive

* NR will increase the variance, because fewer than
desired will respond. But this can be compensated by
anticipating the NR rate and allowing “‘extra sample
size’

* Increased variance often a minor problem,
compared with the bias.

10



Treatment of NR

* NR may be treated by imputation
primarily the item NR ;
not discussed in this course .

* NR may be treated by (adjustment) weighting
primarily the unit NR ;
it Is the main topic in this course

Neither type of treatment will resolve
the real problem, which is bias

Starting points

» Adjustment methods never completely
eliminate the NR bias for a given study
variable. This holds for the methods in this
course, and for any other method

* NR bias may be small for some of the usually
many study variables, but large for others;
unfortunately, we have no way of knowing

11



Comments, questions

The course is theoretical, but has a very
practical background

Different countries have very different

conditions for sampling design and estimation.

The Scandinavian countries have access to
many kinds of registers, providing extensive
sources of auxiliary data.

We are curious : What are the survey
conditions in your country ?

What do you consider to be ‘high NR’ in your
country?

Literature on nonresponse

o little was said in early books on survey
sampling (Cochran and other books from
the 1950’s)

* in recent years, a large body of literature ,
many conferences

« several statistical agencies have paid
considerable attention to the problem

12



Our background and experience
for work on NR methodoloqgy

e S. Lundstrom, Ph.D. thesis, Stockholm
Univ. (1997)

e Lundstrom & Sarndal : Current Best Methods
manual, Statistics Sweden (2002)

http://www.sch.se/statistik/_publikationer/OV9999 2000102_BR_X97%c3%96P0103.pdf.

o Sarndal & Lundstrém:  Estimation in
Surveys with Nonresponse. New York:
Wiley (2005). The course is structured on
this book.

Our background

Séarndal & Lundstrom (2008): Assessing
auxiliary vectors for control of nonresponse bias
in the calibration estimator. Journal of Official
Statistics, 24, 251-260

Sarndal & Lundstrém (2009): Design for
estimation: ldentifying auxiliary vectors to
reduce nonresponse bias. Submitted for
publication

13



Important earlier works

Olkin, Madow and Rubin (editors):
Incomplete data in sample surveys.
New York: Academic Press (1983) (3 volumes)

Groves, Dillman, Eltinge and Little (editors):
Survey Nonresponse.
New York: Wiley (2001)

These books examine NR from many
different perspectives.

A comment

The nature of NR is sometimes described
by terms such as

ignorable, MAR, MCAR,
non-ignorable
These distinctions not needed in this course

14



Statistiska cantralbyrin  Statistics Swaden

12
Introductory aspects of the
course material

426 Eustat

Planning a survey

The process usually starts with a general,
sometimes rather vague description of a
problem (a need for information)

The statistician must determine
the survey objective as clearly as possible:

* What exactly is the problem?

 Exactly what information is wanted?




Types of fact finding

Options :

* An experminent ?
e A survey ?

e Other ?

The statistician’s formulation

must specify :

« the finite population and the
subpopulations (domains) for which
information is required

* the variables to be measured and
the parameters to be estimated




The target population (U)

\

Domain

CF)

Parameters: y _ ZU Vi
Yq :ZUq Yk where (=1,...,0Q
v=FM,usYmseYM )

Aspects of the survey design that need to be
considered :

* Data collection method

* Questionnaire design and pretesting

* Procedures for minimizing response errors
* Selection and training of interviewers
 Techniques for handling nonresponse

* Procedures for tabulation and analysis




No survey is perfect in all regards!

Sampling errors (examined)
Nonsampling errors
* Errors due to non-observation
Undercoverage (examined)
Nonresponse (examined)
* Errors in observations
Measurement

Data processing

Sampling error

Target population (U)

l

Sample

T+ set(S)




Sampling error and nonresponse error

Target population (U)

Sample
— set (S)

Response set ()

A simple experiment to illustrate
sampling error and nonresponse error

Parameter to estimate : The proportion, in
%, of elements with a given property :

100
P :WZU Yk

where

1 if element Kk has the property
Yk = :
0 otherwise

Let us assume P =50




Sampling design: SI, n from N
Assume no auxiliary information available

Estimator of P if full response :

~ 100
P ZTZS Yk

Estimator of P if M out of N respond :

A 100
PNR = ?Zr Yk

Let us study what happens if the
response distribution
is as follows, where 0} = Pr(k responds):

{0.5 if element Kk has the property
k =

0.9 otherwise

Note: The response is directly related to
the property under estimation.

100 repeated realizations (S, I')
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Comments

- In practice, we never know the response
probabilities. To be able to study the effect of
nonresponse, assumptions about response
probabilities are necessary.

- Increasing the sample size will not reduce the
nonresponse bias. As a matter of fact, the
proportion of MSE due to the bias will increase
with increasing sample size, as we now shall
show.

We consider response distributions of the
type :

o) = { 0™ if element k has the property

0.9 otherwise

Consider four such response distributions :

(1)0* =0.5; (2)6" =0.85;
(3)0" =0.88; (4)0" =0.89;




100 repeated realizations (S, r); for each of

these, we compute

A 100
PNR ZFZr Yk

then compute

the proportion of MSE due to squared bias :

)
RelB2 =100x 2188
MSE

where

MSE =Var + Bias®

RelB 2 for different sample sizes and resp. distrib.

0" L
30 300 | 1000 | 2000
050 | 65.1 | 949 | 984 | 992
0.85 2.6 172 | 422 | 59.1
0.88 0.4 3.2 10.1 19.4
0.89 0.1 0.8 2.6 5.9




The proportion of MSE due to squared
bias...

(1) increases with increasing sample size

(1) 1s rather high for large sample sizes even
when the difference between the response
probabilties for elements with the property and
elements without the property is small.

The high proportion will cause the
confidence interval to be invalid,
as we now show.

The usual 95% confidence interval

would be computed as

PNR(100—PNR)
pNR i1.96\/ m

Problem: The coverage rate does not reach
95% when there 1s NR.

10



Coverage rate (%) for different sample sizes
for the response distribution with

{0.85 if element K has the property
k =

0.9 otherwise

Sample size (n)
30 300 | 1000 | 2000
93.2 | 92.6 | 87.1 | 77.9

Sampling, nonresponse and undercoverage error

Frame population Target population

\ / “Persisters”

/

/ \

Overcoverage Undercoverage

11



Different sets

R: Target population elements with complete
or partiell response

NR: Target population elements with no or
inadequate response

O: Elements in the sample which we do not
know if they belong to the target population or
the overcoverage

@ : Elements in the sample which belong to the
overcoverage

Different sets (contin.)

C: Target population elements with
complete response

NC: Target population elements
with partiell response

12



Breakdown of the sample size n

n
|

The data collection

Swedish standard for calculation of
response rates

Unweighted response rate =

_ NR
NR +NNR tUXNQO

where U is the rate of O that belongs
to the nonresponse.

13



Weighted response rate =

_ Zde
2Rk + 2 NrAK FUX o dk

NR is an increasingly serious problem.
It must always be taken into account in
the estimation.

We illustrate this by some evidence.

14



The Swedish Labour Force Survey - Time
series of the nonresponse rate

25 Total unit
nonresponse

20

15

10

5

0 T T T T T T T T
70 72 74 76 78 80 82 84 86 88 90 92 |p4 96 98 OOHOZ 04 06
Noncontact

Refusal

Nonresponse analysis in the Survey on Life and Health

Age group 18-34 | 35-49 | 50-64 | 65-79

Response rate(%) || 54.9 | 61.0 | 72.5 | 78.2

15



Country of birth Nordic | Other
countries

Response rate (%) 66.7 50.8

Income class (in 0-149 |150-299| 300-

thousands of SEK)

Response rate (%) 60.8 70.0 70.2

16



Marital status Married | Other

Response rate (%) 72.7 58.7
Education level Level 1 |[Level2 |Level 3
Response rate (%) 63.7 65.4 75.6

17



International experience

Lower response rate for :

Metropolitan residents

Single people

Members of childless households

Young people

Divorced / widowed people

People with lower educational attainment
Self-employed people

Persons of foreign origin

This course will show :

Use of (the best possible) auxiliary information
will reduce

the nonresponse bias

the variance

the coverage errors

18
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Survey response in your organization

Trends in survey response rates ? Increasing ?

What are some typical response rates ? In the
Labour Force Survey for ex.? Reason for concern ?

Have measures been introduced to increase survey
response ?

Have measures been introduced to improve
estimation ? By more efficient use of auxiliary
information, or by other means ?




Some response rates

The Swedish Household Budget Survey
1958 86 %
2005 52 %

The Swedish Labour Force Survey
1970 97 %
2005 81 %

The Swedish Labour Force Survey - Time
series of the nonresponse rate

25 Total unit

nonresponse

20

15

10

5

0 4

70 72 74 76 78 80 82 84 86 88 90 92 |4 96 98 OOHOZ 04 04

Noncontact

Refusal
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Review : Basic theory for complete response

Important concepts
in design-based estimation
for finite populations :

e Horvitz-Thompson (HT) estimator

» Generalized Regression (GREG)
estimator

« Calibration estimator




The progression of ideas

Unbiased estimators for common designs
(1930’s and on). Cochran (1953) and other
important books of the 1950’s :

o stratified simple random sampling (STSI)
o cluster & two-stage sampling

Horvitz-Thompson (HT) estimator (1952) :
arbitrary sampling design; the idea of
individual inclusion prob’s

The progression of ideas

GREG estimator (1970’s) :
arbitrary auxiliary vector for
model assisted estimation

Calibration estimator (1990°s) :
identify powerful information ; use it
to compute weights for estimation
(with or without NR)
Concurrently, development of computerized
tools : CLAN97, Bascula, Calmar, others




Basic theory for complete response
Population U
of elements k=1,2, ..., N

Sample s (subset of U)

Non-sampled (non-observed) : U -§

Complete response : all those sampled are
also observed (their y-values recorded)

Notation
Finite population U = {1, 2,...Kk,..., N}
Sample from U S
Sampling design p(s)
Inclusion prob. of k Tk
Design weight of k dy =1/ 7z

Joint incl. prob. of k and /¢ k¢




Notation

Study variable y

Its value for element k Yk

We want to estimate ZU Yk

Usually, a survey has many Y — variables
Can be categorical of continuous

Notation
Domain = Sub-population
A typical domain : Uq
ltisasubsetof U : UgcU

Domain total to estimate : 2U q Yk




Notation
Domain-specific y-variable Yq
Its value for element K Yak
Ygk = Yk indomain, Ygk = 0 outside
Domain total to estimate: Zuq Yk =2.u Yok

for ex.: total of disposable income (the variable)
in single-member households (the domain)

The approach to estimation
must handle a variety of practical circumstances

A typical survey has many y-variables :

One for every socio-economic concept

One for every domain of interest (every new
domain adds a new y-variable)

A y-variable is often both categorical (*zero-
one”) and domain-specific (= 0 outside
domain).

For ex.. Unemployed (variable) among persons
living alone (domain).




Even though the survey has many Y-variables,
we can focus on one of them

and on the estimation of

its unknown population total

Y =2 Yk

HT estimator
for complete response :

Yur = > dic Yk

Design weight of kK @ dx =1/

Auxiliary information not used
at the estimation stage




HT estimator
for complete response :

Variance V(\?HT)= 22U FreYkYr

1
Fis _%9 g for ¢k dgp=—
dk( U

F,=d, -1

For ex., for SI sampling, we have YuT =N s

— zl_i 2
and V(NYs)=N (ﬁ N)Syu

HT estimation
for complete response :

The variance estimator
V(YHT ) = ZXsdkeFreYkYe
It has familiar expressions for ‘the usual designs’.

For STSI , with n,, from N, in stratum h
H

YHT = 2 Nh Vs,
. . -h:]' H 2.1 1..2
with estimated variance > NS(=— )S

At " mh Npovh




Auxiliary vector

denoted X ; its dimension may be large

Its value for element K : Xk

To qualify as auxiliary vector,
must know more than just X} for k € s

For example, know Xk forkeU
Or know the total ZU Xk

GREG estimator of Y = ZU Yk (1980%s)

N

Yores = 2os k Yk + Qo Xk = 2 g dkXk) Bs;d

HTest of Y  + regression adjustment;
' an estimator of O

Bg.q isaregression vector,
computed on the sample data




GREG estimator : alternative expression

YAGREG = ZU Yk +stk(Yk - Yk)

Sample sum of

Population sum of : .
P weighted residuals

predicted values
Yk = xkBs:d

computable for keU

The auxiliary information for GREG is:

> u Xk = pop. total of aux. vector

Examples :

¢ A continuous x-variable
xk=Lxg) = Ty xk = (N, Ty xk)’

» A classification of the elements

xg =(0,...,1,..,0) =D Xk =(N1,---, Nj....NJ )




YGREG contains

the estimated reqression vector

r y\—1
Bs;g = (2 diexiexi) ™ (- dixk Vi)
matrix to invert x column vector

Is a (nearly unbiased) estimator
of its population counterpart :

By =y XkX'k)_l(Zu Xk Yk )

System of notation
for means, regression coefficients, etc.

First index : the set of elements that defines
the quantity (“the computation set”)
then semi-colon , then

Second index : the weighting used in the quantity.

Examples:

2 Jk Yk

Ys:d —W weighted sample mean

Bs.q = (s diexpexic) (X A X Vi)

10



If the need arises to be even more
explicit :

B(y:x)s;d =(stkaXi<)_1(stkxkyk)

Regression of y on x, computed over the
sample S with the weighting d, = 1/7,

System of notation

Absence of the second index means :
the weighting is uniform (“unweighted ™).

Examples :

Yu =;ZU Yk unweighted population mean

By = (X, xkxi) O, Xk k)

(unweighted regr. vector)

11



Estimators as weighted sums

HT estimator :
YHT = Xsdk Yk

The weight of k is dyg =1/7y

Estimators as weighted sums

GREG estimator as a weighted sum :

YoreG = 2 dk Ok Y

The weight of element K is

dcdk = designweight x
adjustment factor based on
the auxiliary info.

12



The GREG estimator

gives element K the weight dj gy

where
dk =1/7Zk
Ok =1+Asx

M= (2 %k~ 2 exic) O diexiexd)

GREG estimator; computation

YoreG = . Ak Ok Yk

1. Matrix inversion (stkxkx'k)_l
2. Compute

5= %k — 2 ki) O diexgeie)

3.Compute gk =1+Agx
4. Finally compute d gk

Several software exists for this.

13



Comment

Matrix inversion is part of the
weight computation

s = (DU Xk — Zs dkxk ) (Zs dexiexk) ™
| |

row vector matrix inversion

GREG estimator YAGREG = stkgk Yk

Property of the weights :

> <9k 9k Xk = D, Xk (known total)

They are calibrated to the known information

14



Bias of GREG : is very small, already for
modest sample sizes

Bias/stand. dev. is of order n_l/z

Bias decreases faster than the stand.dev.
For practical purposes we can forget the bias
(assuming full response).

Variance estimation for GREG :
Well known since the 1980°s

Comment
Weights of the form 0y (1+A" Xy )

will be seen often in the following :

the design weight multiplied by an
adjustment factor of the form

1+ A Xk

15



Note :

When we examine estimation for NR,
(Sessions 1_5 and following), the
weights will again have the form
design weight x adjustment factor

but then the estimators will be biased,
more or less, depending on the strength
of the auxiliary vector

Auxiliary information: An example

Forevery Kk in U, suppose known :

* Membership in one out of 2 x 3 =6 possible
groups, e.g., sex by age group

 The value X, of a continuous variable X
e.g., X, = income of K

Many aux. vectors can be formulated
to transmit some or all of this total information .
Let us consider 5 of these vectors.

16



Vector x,  Info 2 Xk Description

Xk Zu Xk total population income

1 xg)' (N,>y k)" population size and total
population income

Vector Info

(0,%¢,0,0,0,0) gy ¥ X %)
population income by age/sex group

(0,0,0,0.0,0,%,0,0,0,0)  (Ni1N23, Ty, X Ty Xk

size of age/sex groups, and
population income by groups

10, 0,00 NN Xy Xy, % Sy, %)

size of sex groups, and income by age groups

17



For each of the five formulated vectors,

YAGREG = stkgkyk

will have a certain mathematical form :

Five different expressions, but all of them are
special cases of the general formula for g, .
(No need to give them individual names - they

are just special cases of one estimator namely
GREG)

For example, with the aux. vector  xp = (1, X )’

YoRreG = g Ok Ok Vi

takes the form that ‘the old literature’ calls
the (simple) regression estimator,

YGREG = N{Vs;d +(YU — Xs:d )Bs;d}

In modern language : Itis
the GREG estimator for the aux vector x, = (1, xi)’

18
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Target population (U)

Sample
set (s)

/

Response set (r)




Notation
Our objective : Toestimate Y = >\ Yk

with an estimator denoted YANR

representing either

Yw =X WkYk (weighting only)

YA|W = Zr Wk Yek (imputation followed
by weighting)

Imputation followed by weighting

A typical survey has many y-variables, indexed
i=1, .. 1

Response set for variable i : r;

Response set for the survey: The set of elements
having responded to at least one item : r




Imputation followed by weighting

YA|W = erk Yek

yk forker

where  Yek = { 9 forker—r

Imputation for item NR: The imputed value Yk
takes the place of the missing value Y,

Components of error

YNR-Y = (Y-Y) + (YNR-Y)
Total error = Sampling error + NR error

~

Y isthe estimator of Y that would be used
under complete response (r =s)

~

YNR is the “NR-estimator” for Y




Two phases of selection

1. s is selected from U

2. givens, risrealised as a
subset from s.

The two probability distributions are

P(S)  (known)

and
q(r\s) (unknown)

Both are taken into account
in evaluating bias and variance

We use the conditional argument :

For expected value :
Epg () =EplEq (‘5)]

For variance :

Vg () =VplEq (‘5)] +EplVyq (‘5)]




The basic statistical properties of Yygr

The bias:
qu (YNR) - qu (YNR) _Y

The accuracy, measured by MSE :

~ ~ ~ 2
MSE 1y (o) =V (P + (B (Vo)

The bias

will be carefully studied in this course. It
has two components

qu(YANR) = Epq (YANR)_Y
= [Ep(Y)-Y] + [Epq(YnrR-Y)]

=Bsam + BNR

sampling bias + NR bias

Bgap I8 zero (for HT) or negligible (for GREG)




The variance
By definition

; ; Y.
Vpg(YNR) = Epg (YNR —Epg(YNR))

It can be decomposed into two components

Vpq(YNR) =Vsam + VNR

sampling variance + NR variance

The sampling variance component :

Vsam =Vp(Y) =Epl(Y —Ep(¥))?]

depends only on the sampling design p(s)

For ex., under SRS, .
if the full response estimatoris Y = N Vg

then the well-known expression

1 1
VsaM = NZ(H—W)%Z/U




The NR variance component is more complex :

where

BNRs = Eq ((\?NR —V)IS) (conditional NR bias)

Add the squared bias to arrive at the
the measure of accuracy :
MSE Pq (YANR) =

Vp(¥)+EpVg (YNR]S) + Ep(BIiR|S)+2Covp(\f, Brrls) +
ZBSAM BNR + (BSAM )2
Boan 1S Negligible, and if Cov term small, then

MSE pq (YNR) ~ Vp(YA) +EpVyq (YANR‘S) + Ep(BﬁlR|s)




The accuracy has two parts :

2 7 7 2
MSE pq (YNR) # Vp(Y) + Equ(YNR‘S)+Ep(BNR|S)

due to
sampling due to NR

The main problem with NR:
The term involving the bias, Ep(BﬁlR‘s)
can be a very large component of MSE
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Target population U

_Sample S

Response set r




Notation and terminology

Population U
of elements k=1, 2, ..., N

Sample s (subset of U)
Non-sampled : U —s

Response set I (subset of 9)
Sampled but non-responding : S—r
Uo s or

The objective

remains to estimate the total Y = ZU Yi

In practice, many Yy-totals and functions of y-totals.
But we can focus here on one total.

No need at this point to distinguish

item NR and unit NR.

Perfect coverage assumed.




The response set I
is the set for which we observe Yk

Available y-data : yk for ker
Missing values : Yy for kes—r

where rcscu

Nonresponse means that I C S

Full response means that I =S
with probability one

Two phases of selection

Phase one : Sample selection
with known sampling design

Phase two : Response selection
with unknown response mechanism




Phase one: Sample selection

Known sampling design : p(s)

Known inclusion prob. of K: T

Known design weight of K :
dp =1/my

Phase two: Response selection

Unknown response mechanism : q(r\s)
Unknown response prob. of K: 8,

Unknown response influence of k:

¢, =1/0,




A note on terminology

dg =1/my computable weight

9. =1/9, unknown; not a weight,
called influence

Sample weighting
combined with
response weighting

Desired (but impossible) combined weighting :

1 1

dk ><¢k = —X—
T Oy

RN

known unknown




Desirable nonresponse weighting

A d
Y = Zre—kyk=zrdk¢kyk
K

Cannot be computed,

because unknown influences ¢k =1 /Gk

We present the calibration approach.

But first we look at a more
traditional approach.

Most estimators in the traditional approach
are special cases of the calibration approach.




Traditional approach : The principal idea
is to derive estimates O
of the unknown response prob. @ y

Then use these estimates in constructing the

estimator of the total Y .

An often used form of this approach :

Starting from Y = Zr dy i)’k

replace 1/0g by l/ék

~ 1
We get Y =ZrdkA Yk

sampling  NR adjustment
weight weight




A large literature exists about this type of
estimator :

A 1
Y =X r dy — Yk
Ok
Estimation of 0, done
with the aid of a response model :
* response homogeneity group (RHG:s)
* logistic

The term response propensity is sometimes used

The 1dea behind
response homogeneity groups (RHG:s)

The elements in the sample (and in the
response set) can be divided into groups.

Everyone in the same group responds with
the same probability, but these probabilities
can vary considerably between the groups .




Example : STSI sampling
RHG:s coinciding with strata

(each stratum assumed to be an RHG)

1 _Npnp Ny

dy =
0y Nh My My
A H N n H .
B> Y= yihIyoy- SN,
h=1 Mh Mh h=1

The procedure 1s convenient but oversimplifies the
problem. It is a special case of the calibration

approach.

A variation of the traditional approach

Start with 2-phase GREG estimator
A 1
Y = > d QgekYk

After estimation of the response prob, we get

1

Y = 2rdk =
Ok

9ok Yk




A general method for estimation in the presence
of NR should

be easy to understand
cover many survey situations

offer a systematic way to incorporate auxiliary
information

be computationally easy

be suitable for statistics production (in NSI:s)

One can maintain that
the calibration approach

satisfies these requirements.
There is an extensive literature since 1990.

10



Steps in
the calibration approach

» State the information you wish to use.

» Formulate the corresponding aux. vector

« State the calibration equation

» Specify the starting weights (usually the
sampling weights)

» Compute new weights - the calibrated
weights - that respect the calibration
equation

» Use the weights to compute calibration
estimates

Pedagogical note

Calibration estimation is a highly general approach.

It covers many situations arising in practice.

Generality is at the price of a certain level of
abstraction.

The formulation uses linear algebra.
Knowledge of regression theory is helpful.

11



Why can we not use the
design weights di =1/my

without any further adjustment ?

Answer: They are not large
enough when there is NR.

Y = 2rdkYy, = underestimation

|

We must expand the design weights

Information
may exist
at the population level
at the sample level

12



Structure
Target population U

_Sample S

Response set r

Levels of information

Distinguish :

 Information at the population level. Such
info, taken from population registers, is
particularly prevalent and important in
Scandinavia, The Netherlands, and
increasingly elsewhere in Europe

 Information at the sample level. Such info
may be present in any sample survey

13



Levels of information

Notation : Two types of auxiliary vector

X’li transmits information

at the population level

XE transmits information
at the sample level

Auxiliary vector , population level

Two common situations :
. xii known value for every k in U

(given in the frame, or coming from
admin.reg.

% * .
« the total X =) ) Xk is imported
from accurate outside source

xﬁ need not be known for every K

14



Sources of variables for the star vector X;:
* the existing frame
* by matching with other registers

Examples of variables for the star vector :
For persons : age, sex, address, income

To related persons: Example, in survey of
school children, get (by matching)
vartiables for parents

Auxiliary vector , sample level

XE is a known value for every k in s
(observed for the sample units)

Hence we can compute and use
X = ZS d ka

It is unbiased information ,
not damaged by NR

15



Examples of variables for the moon vector Xck)
* [dentity of the interviewer

* Ease of establishing contact with selected
sample element

* Other survey process characteristics

» Basic question method (“easily observed
features” of sampled elements)

* Register info transmitted only to the
sample data file, for convenience

The information statement

* Specifies the information at hand ;
totals or estimated totals

* May refer to either level:
Population level, sample level

* Itis not a model statement

16



Information is something we know;
it provides input for the calibration
approach .

(By contrast, a model is something you
do not know, but venture to assume.)

Statement of auxiliary information
sampling, then nonresponse

Set of units Information
Population U ZU xi known
Sample S xk known,k s
Response set I xk and xj known,k er

17



e The auxiliary vector

General notation : Xk

* The information available about that vector

General notation : X

Three special cases :
» population info only

« sample info only

* both types of info

18



* population info only

Xy = Xk ; X= U xk  (known total)

* sample info only

X =Xk Xzzsdkxok
(unbiasedly estimated total)

* both types of info

Xk = (Xﬁj . X: ZU Xii
K > dixi

Xk

Example :

xk =(0,..,1,..,0 0,..,1,...0)’
/ \

identifies age/sex group identifies interviewer
for ke U for ke s

19



For the study variable Y

we know (we have observed) :
yk for ker; rcscu
Missing values :

yk for kKes—r

The calibration estimator is of the form
Yo = D Wk Yk

Wi = dy Vg

with
where d, = 1/m, , and the factor Vk

serves to

+ expand the design weight d, for unit k
* incorporate the auxiliary information
 reduce as far as possible bias due to NR
* reduce the variance

20



Note: We want V, > 1 for all (or nearly

all) K er , inorder to compensate for
the elements lost by NR.

Primary interest :

Examine the (remaining) bias in YAW =2 r Wk Yk
attempt to reduce it further.
Recepie: Seek better and better
auxiliary vectors for the calibration!
(Sessions 2 3, 2 4, 2 5)

Secundary interest (but also important):

Examine the variance of YW
find methods to estimate it .

21



Mathematically, the adjustment
factor V| can be determined by
different criteria, for example

e Vg = 1+ A'x k linear in the aux. vector

. Vi =exp(Axy) exponential

Determine first A

(explicitly or by numeric methods)

Linear adjustment factor

VK is determined to satisfy :

(1) Vi =1+ L' Xk linearity
and

(ih) Z diwxg =X calibration to the given
' information X

Now determine A,

22



From (i) and (ii) follow

A= ,I‘ Z(X—Zrdkxk),(zrdkxkxkyl
/!

assuming the matrix non-singular.
Then the desired calibrated weights are

wi =dyvi = dy (1+Apxy)

Computational note:
Possibility of negative weights :
devk =dg (1+A'xg)
with
M= (X_Zr dyxk )’(Zr dyxkxk )_1

can be negative. It does happen, but rarely.

23



Computational note:

The vector

(X—Zr dek ),(Zr dekX'k )71

1S not near zero, as it was
for the GREG estimator (in the absence of NR)

Properties of the calibrated weights

wi = dy (1+Apxy)
1.  They expand :
W, > d «  all k, oralmost all
2. Zr Wk = N = population size

under a simple condition

24



Note : if both types of information, then

X*
XK = K
Xk
and the information input is

ol
2 dkxk

When both types of information present,
it is also possible to calibrate in two steps :

First on the sample information; gives
intermediate weights.

Then in step two, the intermediate weights
are calibrated, using also the population

information, to obtain the final weights W, .

25



Consistency

is also an important motivation for calibration (in
addition to bias reduction and variance reduction)

If x, is known for k €5, the statistical agency can
sum over S and publish the unbiased estimate

X = stkxk

Users often require that this estimate coincide

with the estimate obtained by summing over I
ing the calibrated weights : =
using the calibrated weights : Xy Zr W Xk

Calibration makes this consistency possible

Almost all of our aux. vectors are
of the form:

There exists a constant vector p such that

p'xyg =1 forall k
For example, if xg =(1,Xk)’, then p=(1,0)".

26



When xj is such that p'x =1 forall Kk

then the weights simplify :

: OVl
W = divk =dg{X (ZrdekaT Xk §

X} , , ..
X - [Zzzkf&] 1s the information input
S

A summary of this session: We have
* discussed two types of auxiliary information

* introduced the idea of a weighting (of
responding elements) that is calibrated to the
given information

* hinted that calibrated weighting gives
consistency, and that it often leads to both
reduced NR bias and reduced variance . More
about this later.

27
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The calibration approach

Some features:
» Generality (any sampling design,
and auxiliary vector)

» ”"Conventional techniques” are
special cases

» Computational feasibility
(software exists)




The calibration approach brings generality

Earlier : Specific estimators were used for
surveys with NR. They had names, such as
Ratio estimator, Weighting Class estimator
and so on.

Now : Most of these ‘conventional technigques’
are simple special cases of the calibration
approach. Specific names no longer needed.

All are calibration estimators.

Another feature of the calibration estimator:
Perfect estimates under certain condition

Consider the case where
Xk =xfz and X =Xx* =30 Xk
Assume that Yk = (xk)'B" holds for every

k € U (perfect linear regression), then
Yw =2y Yk =Y

No sampling error, no NR-bias!




Recall: We have specified the weights as

Wi =dgVk Vg =1+Apxk

! ' / _1
where r =(X—Zrdek)(Zrdeka)
They satisfy the calibration equation

ZerXk =X

But they are not unique: They are not the only
ones that satisfy the calibration equation.

In fact, for a given x,-vector with given
information input X, there exist many sets of
weights that satisfy the calibration equation

ZerXk =X

In other words, “calibrated weights” is not
a unique concept.

Let us examine this.




The calibration procedure takes certain
initial weights

and transforms them into

(final) calibrated weights

The initial weigths can be specified in
more than one way.

Consider the weights Wy = d Vi
where  Vk =1+Ayzg

! ' 4 _1
M =(X-3, d\aka) (Z/rdakaXk)
d . isaninitial weight/
z, is an instrument vector (may be # xy)
These W satisfy the calibration equation

2 Wk Xk =D Xk

for any choice of d, and z
(as long as the matrix can be inverted)




The "natural choices”

dok =dg =1/7 and ZK =Xk

are used most of the time and will be called the
standard specifications .

An important type of z-vector
There exists a constant vector p

not dependent on k such that

nz, =1 forall keU
When z, = X, this condition reads:

pxig =1 forall keU

Almost all of our x-vectors are of this type




Different initial weights
may produce the same calibrated weights

When the z-vector satisfies R'zi =1 forall k

then

dok = dk
and
dx =Cdg

give the same calibrated weights

Example
e Sl sampling; n from N

° — — v =
z, =x, =x, =1

Then the initial weights N
Aok =dk =—
and n
n N
dy =dy —=—
1974 K mom
give the same calibrated weights, namely,




Invariant calibrated weights

are also obtained in the following situation:

* STSI with strataU ; ; Ny from Np p=1,...

z, =X, =X, = stratum identifier

Then the initial weights

and

give the same calibrated weights,
namely wg =Np/mp

Usually the components of z, are
functions of the x-variables

For example, if xk = (X1, X2k )’

we get calibrated weights by taking

z = (XK X2k )




The well-known Ratio (RA) estimator
Is obtained by the specifications

XK =Xk =X and zx =1

Note : Non-standard specifications !

They give

A perspective on the weights : We can write the
calibrated weight as the sum of two components

Wk = WMk +WRk
= “Main term” + “Remainder”
with
! 4 _1
Wik = Aok X (2, dokezixkc )2}

WRk = dak{l—(Zr dakxk)’(Zr daxzkxk ) Lz}




WRK is often small compared to the main term.

In particular , wgi =0 forall k
when z, has the following property :

We can specify a constant vector W
not dependent on k such that p'zy =1 forall K

Then WRk =0 and Wi =Wpk

(An example : z, = x, =(1, x,)' and p=(1,0)")

When Wg, =0, the calibrated
weights have simplified form

! !/ _1
Wi =Wk = 0ol X (X doeziexic )2y}
Under the standard specifications :

wy = wy = de{X’ (Zr dixkxk ) Ixi b




Agreement with the GREG estimator

If r=s (complete response), and if

* *
Xk =Xk and Zg =CXg
for any positive constant c, then

the calibration estimator and
the GREG estimator
can be shown to be identical.

10
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Traditional estimators as
special cases of the calibration
approach
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The family of calibration estimators

includes many
‘traditional estimator formulas’

Let us look at some examples.
The standard specification
dok =di and  Zp =Xk

1s used (unless otherwise stated).




An advantage of the calibration approach:

We need not any more think in terms of
‘traditional estimators’ with specific names.

All of the following examples are special cases
of the calibration approach,
corresponding to simple formulations

of the auxiliary vector X,

The simplest auxiliary vector

Xy :xiz =1 forall K
The corresponding information is weak :
ZU Xk = ZU I=N

Calibrated weights (by the general formula) :
N

Zrdk

NV 2rdkYk v
= Yy = N g NS =Veo

known as the Expansion estimator

Wy =dg x




The simplest auxiliary vector

X} = xﬁ =1
In particular, for SI (n sampled from N,
M respondents):

Nn N
Wk e
nm m

\

sampling  NR adjustment

The simplest auxiliary vector

X, =X:; =1 forall kK
— Yw =YExp =N¥rqg
. weaknessthe aux. vector Xk =1
recognizes no differences among elements

* bias usually large




One can show, for any sampling design,

biaS(YAExp)/ N~ Yu;0 — WU

Note the
difference between two means :

: 0
The theta-weighted mean  yy.¢ :M
ZU Ok
- < y
The unweighted mean YU = ZUN k

When Y and O are highly correlated,
that difference can be very large
(more about this later).

Comment on
the Expansion Estimator

Despite an often large nonresponse bias, the
expansion estimator is (surprisingly enough)

often used by practitioners and researchers in social
science.

This practice, which has developed in some
disciplines, cannot be recommended.




The classification vector (‘“‘eamma vector”)

Elements classified into P dummy-coded groups

Yk = (V1Kkoe> ¥ pkoees YPk )
=(0,...,1,...,0)’

The only entry ‘1’

identifies the group (out of P possible ones)
to which element Kk belongs

The classification vector

Typical examples:

« Age groups

» Age groups by sex (complete crossing)
« Complete crossing of >2 groupings

* Groups formed by intervals
of a continuous X-variable




The classification vector
as a star vector

x,=x, = Y, =(0,...,1,...,0)

The associated information :
The vector of population class frequencies

> Xk = (Npes N e Np)’

Calibrated weights (by the general formula) :

N
W = di x 5 pd for all K in group p
rp K

The classification vector

as a star vector : Xk=X§=Vk

The calibration estimator takes the form
A P _ oY
Yw = pZ_l N pYrp;d = YPWA

known as the
Population Weighting Adjustment estimator




Population Weighting Adjustment estimator

A closer look :

P
Ypwa = DN pYrp:d
with p=lI

er d k Yk
Yrpd =75 4, = weighted group y-mean
Zr k
P for respondents

Np = known group count in the population

The classification vector
as a moon vector

x, =xk = Tk =(0,...,1,...,0)

Information for calibration :
the unbiasedly estimated class counts

N, :Zspdk’ p=12,.,P

The general formula gives the weights

25 dk

p

Wi = dg x
d
er k

for all k in group p




The classification vector

tor : °
as a moon vector . Xk:Xk: ’Yk

In particular for SI sampling :

N Np ,
Wy =——— forall k in group p.

hmp
Sampling / \

ot NR adjustment
welg by inverse of
group response rate

The classification vector
as a moon vector

x, =xk = Tk =(0,...,1,...,0)

. P n
l——Lﬁ> Yw = 2 prrp;d :YWC
p=I1

known as
Weighting Class estimator




Weighting Class estimator

IN pyrp;d

Ywc =

T Mo

Class sizes not known but estimated: Np = ZS ) dy

Zr dk Yk .
—P = weighted group y-mean

Yrp:d =
P er di for respondents

A continuous X-variable

for example, X, = income ; Y, = expenditure

Two vector formulations are of interest :

. szxﬁzxk Info: ZUXkZZUXk

. Xk:Xﬁ:(l)Xk)’ Info: 2 xk =(N,2y Xk)'




The Ratio Estimator

is obtained by formulating

X = Xii = Xy and Zy =1 (non-standard!)

: _ 2U Xk
&:> weights Wk =0k Xm

d n
Zr k Yk _V

calibration estimator Yy = () Xk)
J 2or Xk

Not very efficient for controlling bias.
A better use of the X-variable :
create size groups or “include an intercept”

The (simple) Regression Estimator

A better use of the X-variable:
* '
xk =Xk =(LXk) =z

calibrated weights given by :

1 4 Xy _Xr;d
2rdk 2 Ak (Xk —7r;d)2

The calibration estimator takes the form

Yo = N{Vr;d +(Xy —Xr.d) Br.d }:YAREG

\

regression coefficient

divik =dg xN { (Xk —Xr:d)

10



The (simple) Regression Estimator

A closer look :

YAREG =N {Vr;d +(Xy —Xr:d) Br;d}

with
)_(r;d = Zrdkxk /Zrdk

Yr;d  analogous Yy-mean

_ 2r 9k O = Xr;d )Yk — Yr;d)
> A (X~ Xrzg)°

regression of Y on X

Br.d

b

Combining
a classification and a continuous x-variable

Information about both

(1) the classification vector

Y= (Pioeens Y pkoees Vi)'
=(0,...,1,...,0)’

and

(i1) a continuous variable with value X,

11



Known group totals for a continuous variable

The vector formulation :

* , '
Xk =Xk = (P1k Xk o+ ¥ pk Xk o+ Y Pk Xk )" = Xk Yk
Information for p=1,...,P: Z:prk

zk =7k =(0,....L,....,0)"  (not standard)

gives the SEPRA (separate ratio) estimator

Known group counts and
oroup totals for a continuous variable

The vector formulation :
* ' N
Xk =Xk =(Yk» XkYk) =Zk

(V 1ksres Y pooeres V ks Xk Y ikoeees X picoeees XV pic )]

Information for p=1,...,P ' Np and ZUpXk

gives the SEPREG (separate regression) estimator

12



The Separate Regression Estimator

P
Yw=2 N p{yrp;d +(YU o ~Xrp:d )Brp;d} = YSEPREG
p=1

Marginal counts for a two-way classification

P groups for classification 1 (say, age by sex)
H groups for classification 2 (say, profession)

*
Xk =Xk =
= (71K >++> ¥ pks++> VPK > O1K >+-+> Ohk 5+++s OH —1,k )’
=(0,...,1,...,0 0,...,1,...,0)

Calibration on the P + H - 1 marginal counts .
Note: H-1

Gives the two-way classification estimator

13



9

List of ‘traditional estimators

(We shall refer to them later.)

Expansion (EXP)
Weighting Class (WC)

Population Weighting Adjustment (PWA)

Ratio (RA)
Regression (REG)
Separate Ratio (SEPRA)

Separate Regression (SEPREG)

Two-Way Classification (TWOWAY)

Comment : No need to give individual names
to the traditional estimators.

All are calibration estimators.

For example, although known earlier as
‘regression estimator’,

YAREG =N {yr;d +(XU —Xr;d) Br.d }

1s now completely described as the
calibration estimator for the vector Xy = Xii = (L, xk)'

14
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Your set of course materials contains an appendix
with a number of exercises.

Some of these ask you to formulate (verbally)
your response to a given practical situation,
others require an algebraic derivation.




You are encouraged to consider these exercises,
now during the course, or after the course.

Exercises 1 and 2 reflect practical situations that
survey statisticians are likely to encounter in their
work. Think about the (verbal) answers you would
give.
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2 1
Calibration with combined
use of sample information and
population information

@ Eustat

Different levels of auxiliary information

Population level X?z

‘ Sample level

— X




Recall the traditional approach

Find estimates ék
of the unknown response prob. O

1
Then form Y :Zrdk ; Vi
K
If population totals are available, A
there may be a second step: Use (J k /0 k
as starting weights; get final
weights by calibrating
to the known population totals

Alternative traditional approach

Start from 2-phase GREG estimator

A 1
Y = 2k, GokYk
k
After estimation of the response prob, we get

Y =3, dy

1
0, Ok Yk




The first step in traditional approaches:

The idea: Adjust for nonresponse by model fitting

An explicit model is formulated, with the O
as unknown parameters.

The model is fitted, ék is obtained as an
estimate of Ok, and 1/0)

is used as a weight adjustment to d k

Ex. Logistic regression fitting

Frequently used : Subgrouping

The sample s is split into a number of
subgroups (Response omogeneity groups)

The inverse of the response fraction within
a group is used as a weight adjustment to d




The traditional approach often gives

the same result as the calibration approach

We return to the calibration estimator

Y =D Wk Yk

Let us consider alternatives
for computing the W,

Single-step or two-step may be used.

We recommend single-step, as follows:

Initial weights: d ok = d k
%k

_| Xk

Auxiliary vector: Xk =] .
Xk

Calibration equation: Y wy xi _[ZZU Xk }
d

Then compute the W,




Two variations of two-step :
Two-step A
and

Two-step B

Two-step A

Step 1:
Initial weights: d k
Auxiliary vector: XKk =Xk

Calibration equation: ). WXk => ¢ dxX




Two-step A (cont.)

Step 2:

Initial weights:

Auxiliary vector:

Calibration equation:

Two-step B

Step 1:

Initial weights:

Auxiliary vector:

Calibration equation:




Two-step B (cont.)
Step 2:

Initial weights: le
Auxiliary vector: Xk = xfz

Calibration equation: D Wy Bk Xk = U Xk

Here no calibration to the sample information

> dkxk

An example of calibration with
information at both levels

Sample level:  xj = v =(Y1k s ¥ pksees YPK )

(classification for k € S)
Population level: X>|i = (1, xg)’

(X, a continuous variable
with known population total)




Single-step

Initial weights: dak =d k

o Xk
Auxiliary vector: Xk =
Tk

2.U %k
Calibration equation: > Wi Xk :[
2.5k vk

Two-step A

Step 1:

Initial weights: d k
Auxiliary vector: Xf( =YK

Calibration equation: Zr Wi Xk = 2.s Ak vk




Two-step A (cont.)

Step 2:

Initial weights: le

' [Xk J
Auxiliary vector: Xk =
Tk

Calibration equation:  »’ Wy axXk = [
Z S d kYk

Two-step B

Step 1:
Initial weights: d k

Auxiliary vector: Xf( =YK

Calibration equation: " wiexy => di vk




Two-step B (cont.)

Step 2:
Initial weights: Wiz
%* !/
Auxiliary vector: Xk = (1, Xk )

N
*
Calibrati tion: WoBkXk =
alibration equation Zr 2Bk Xk [ZU XkJ

Comments:

In general, Single-step, Two-step A and
Two-step B give different weight systems.
But we expect the estimators to have minor
differences only.

There is no disadvantage in mixing the
population information with the sample
information. It is important that both sources are
allowed to contribute.

10



The Two-step B procedure
resembles the traditional approach,
and has been much used in practice

Step 1: Adjust for nonresponse

Step 2: Achieve consistency of the
weight system and reduce the variance
somewhat

But we recommend
the Single-step procedure.

Monte Carlo simulation

10,000 SI samples

each of size n=300 drawn from
experimental population of size N = 832,
constructed from actual survey data :
Statistics Sweden’s KYBOK survey

FElements classified into four administrative
groups; sizes: 348,234,161, 89

11



Monte Carlo simulation

Information: Forevery k € U, we know
» membership in one of 4 admin. groups

» the value X, of a continuous variable
X = sq.root revenues

We can use all or some of the info.

Study variable: Yy = expenditures

Monte Carlo simulation
measures computed

RelBias =100 [Ave(My )-Y1/Y

10,000
AveMy)= > YW(J')/IO,OOO
j=1
| 10,000[Y P 10"
Vari = iy — Ave x10"
s = oy % My~ Ak

5

12



Monte Carlo simulation ; logit response

Estimator RelBias | Variance
EXP 5.0 69.6
Single-step -0.6 9.7
Two-step A -0.6 9.8
Two-step B -0.8 9.5

Monte Carlo simulation ; increasing exp response

Estimator RelBias | Variance
EXP 9.3 70.1
Single-Step -2.4 8.2
Two-step A -2.3 8.3
Two-step B -3.0 8.0

13



Our conclusion

In practice there are no rational grounds
for selecting another method than

the Single-step procedure.

14
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2 2
Analysing the bias
remaining in the calibration
estimator

P AEustat

Important to try to reduce the bias ?
Most of us would say YES, OF COURSE.

A (pessimistic) argument for a NO :

There is no satisfactory theoretical solution;
the bias cannot be estimated.

It i1s always unknown

(because the response probabilities unknown)

The approach that we present not pessimistic.




Important to try to reduce the bias ?

Yes. It is true that the bias due to NR
cannot be known or estimated.

But we must strive to
reduce the bias .
We describe methods for this.

Calibration is not a panacea.

No matter how we choose the aux. vector, the
calibration estimator (or any other estimator) will
always have a remaining bias .

The question becomes : How do we reduce the
remaining bias ?

Answer: Seek ever better X k

We need procedures for this search
(Sessions 2 3,2 4,2 5)




Improved auxiliary vector
will (usually) lead to

reduced bias , reduced variance

Interesting quantities are :

(a) the mean squared error
MSE = (Bias)2+ Variance

and

(b) proportion of MSE due to squared bias

(Bias)2 / {(Bias)2 + Variance}




A bad situation : bias > stand. dev.

distribution of ¥

stand.dev. of Y

/ — bias —>\

true value Y mean of Y

Bad situation : squared bias represents
a large portion of the MSE

—> the interval

Yil.%xm\

estimated stand.dev.

will almost certainly not contain the

unknown value Y for which we want to
state valid 95% confidence limits




We know :

Variance
is often small (and tends to 0)

compared to

squared bias (does not tend to 0)

Both bias and variance are theoretical
quantities (expectations), stated in terms of
values for the whole finite population

Variance can be estimated, but not the bias .

The bias of the calibration estimator

 The calibration estimator is not without bias.
(Same holds for any other type of estimator.)

» The bias comes (almost entirely) from the NR,
not from the probability sampling.

» 1f 100% response, the calibration estimator
becomes the (almost) unbiased GREG estimator.

* Both bias and variance of the calibration
estimator depend on the strength of the auxiliary
vector. Important: Seek powerful auxiliary vector.




The bias of the calibration estimator

Recall the general definition :

bias =

expected value of estimator
minus
value of parameter under estimation

What is ‘expected value’ in our case ?

The bias of the calibration estimator

We assess expected value, bias and variance
jointly under :

the known sample selection p(s) and
the unknown response mechanism  g(r|s)

bias (Y ) = E ,, (Y )= Y

Our assumptions on the unknown ¢(r|s)
are ‘almost none at all’.




The bias of the calibration estimator

Derivation of the bias is
an evaluation in two phases :

bias(Yy ) = E ,(E, (Y| ) - Y

Let us evaluate it !

Approximate expression is obtainable for
any auxiliary vector
any sampling design

Before evaluating the bias in a general way
(arbitrary sampling design, arbitrary aux. vector)

let us consider a simple example .




Example: The simplest auxiliary vector

XkZX;::l for all k

n _ dyy
= Vo =NYr.d =N%

Weighted respondent mean, expanded by N

Recommended exercise :
Use first principles to derive its bias !

We find
bias(Ygxp /N) =yy.0-yu

o 2uP%kk

Yu:o theta-weighted mean
ZU Ok e

_ 1
Yu = N ZU Yk simple unweighted mean

Why approximation ?
Answer: Exact expression hard to obtain.
Itis a close approx. ? Yes.




The bias of the expansion estimator

The theta-weighted population mean
can differ considerably from

the unweighted population mean,
(both of them unknown),

so bias can be very large.

These means differ considerably

when Yy and O have high correlation.

Suppose the correlation

between Y and 0 is 0.6.
Then simple analysis shows that

bias(Ygyp /N) ~0.6xcv(0)x S,y

where

cv(0)=Sor / 6U the coeff. of variation of 0

SyU the stand. dev.of ¥y in U




If the response probabilities 0
do not vary at all, then

ev(0)=Sey /0y = 0
and
bias(Ygyp /N) =0

As long as all elements have the same
response prob. (perhaps considerably < 1),
there is no bias .

But suppose
ev(®) =Sgr /0y = 0.1

Then

bias(Ygyp / N) = 0.6x0.1x5,y = 0.06 5,y

This bias may not seem large, but the crucial
question is : How serious is it compared with

stand.dev(Y xp/N) 2

10



A | )
Var(Ygxp/N)=—S
Yexp I N)=—S3y

(a crude approximation; SI sampling assumed)
Suppose m = 900 responding elements
stand.dev(Ygpyp /N) = 0.033 SyU

compared with :

bias(Ygyp / N) = 0.06 S,/

Then
(Bias)? /[(Bias)? + Variance] =

(0.06)%/[(0.06)% + (1/900)] =
0.0036/(0.0036 + 0.0011) = 77 %

Impossible then to make valid
inference by confidence interval !

11



We return to the
General calibration estimator

For a specified auxiliary vector x,
with corresponding information X,

let us evaluate its bias.

The Calibration Estimator : Its bias

Y= D WkVk

with
Wi =dpve =di (1+),xy)

A, :(X_Zrdkxk)’(Zrdkxkx'k)_l

matrix
inversion

12



Deriving the bias of the calibration estimator

requires an evaluation of

bias(Yyy ) = E , (E, (Y| $)) - Y

This exact bias expression does not tell us
much. But it is closely approximated
by a much more informative quantity called

nearbias (YW )

Comments on approximation:

All ‘modern advanced estimators’,
GREG and others, are complex (non-
linear). We cannot assess the exact
variance of GREG, but there is an
excellent approximation.

Likewise, for the calibration estimator,
we work not with the exact expression
for bias and variance, but with close
approximations.

13



Derivation of the bias :

Technique : Taylor linearization.

Keep the leading term of the development ;
for this term, we can evaluate the expected
values in question.

Calibration estimator
close approximation to its bias

bias(fW) ~ nearbias (fW)

where
nearbias (f’W) = - ZU (1-9;)egr

with eor = ik —X;Buo

By.g = (ZU 0 kXX VZU LS 957"

14



nearbias (}}W) = — ZU (1-07)eqi
is important in the following
It is a general formula, valid for:
 any sampling design
* any aux. vector

* 1itis a close approximation (verified
in simulations)

Comments
* Detailed derivation of nearbias, see the book

* For given auxiliary vector, nearbias is the
same for any sampling design, but depends on
the (unknown) response prob’s

* nearbias is a function of certain regression
residuals (not the usual regression residuals)

» The variance does depend on sampling
design

15



Comments

* The nearbias formula makes no distinction
between “star variables” and “moon variables”

 In other words, for bias reduction, an x-variable 1s
equally important when

it carries info to the pop. level (included in X;: )

as when it carries info only to the sample level
(included in x; )

Surprising conclusion, perhaps.

But for variance, the distinction can be important.

Example: Let x; be a continuous aux. variable
* Info at population level : xj = xp =(1,xz)
= N and ) ;;x; known
= Yy =YReG = N{Vy.a + (fU —J_Cr;d)Br;d}
« Info at sample level only : xj =x}, =(1,x)’
= N = 2.4k and Y djx; computable
- I}W = N{)_’r;d + (J_Cs;d —Xp.d )Br;d}
where Xg:d = zs djxp /N

The two estimators differ, but same nearbias .

16



» Can nearbias be zero? (Would mean that
the calibration estimator is almost unbiased.)

Answer : Yes .
* Under what condition(s) ?

Answer : There are 2 conditions, each
sufficient to give nearbias = 0.

« Can we expect to satisfy these conditions
in practice ?

Answer: Not completely. We can
reduce the bias.

Conditions for nearbias = 0

In words : nearbias (I;W) =0
under either of the follwing conditions:

Condition 1 : The influence ¢ has
perfect linear relation to the aux. vector

Condition 2 : The study variable y has
perfect linear relation to the aux. vector

17



Condition 1

nearbias = 0 if the influence ¢ has perfect
linear relation to the auxiliary vector :

nearbias (?W)zo if, forall k in U,

1 ,
¢k:9_k =14+A X/

for some constant vector A

Exercise : Show this !

Comments :

1. The requirement @ =1+ A x f must
hold for all k € U.

2. Itis not a model. (A model is something
you assume as a basis for a statistical
procedure.) It is a population property.

3. It requires the influence to be linear in - X

4. If 1t holds, nearbias = 0

18



Condition 2

nearbias = 0 if the study variable y has
perfect linear relation to the aux. vector
nearbias (fW) =0 if, forall k € U,
Vi =PBxk
for some constant vector [3

Exercise : Show this !

Condition 2

Note :
vi =B'x; forall keU

is not a model.
It is a population property saying that
nearbias =0

if the y-variable has perfect linear relation
to the aux. vector.

19



Example: auxiliary vector Xy = xz =(1,xz)
gives regression estimator:
fW = ?REG = N{)_’r;d + (XU _fr;d )Br;d}
nearbias =0 if:

¢k —a-+ bxk ,allkeU Condition 1

or if
Vi =a+ px,allkelU Condition 2

Comment
We have found that

nearbias (I}W) =0
1.if the influence ¢ has perfect linear relation

to the aux. vector

2. if the y-variable has perfect linear relation to the
aux. vector .

20



Comment
There are many y-variables in a survey :

* One for every socio-economic concept
measured in the survey

* One for every domain (sub-population) of interest

To have nearbias = 0 for the whole survey requires
that every one of the many y-variables must have
perfect linear relation to the auxiliary vector.

Not easy (or impossible) to fulfill.

Comment

Therefore,
the first condition is the more important one

If satisfied, then nearbias (¥, ) =0

for every one of the many y-variables

21



Can the statistician

control

the remaining bias ?

make nearbias smaller ?

Can the bias be controlled ?

We would like to come close to one or both of :

. the influence ¢ has perfect linear relation
to the aux. vector

2. every y-variable of interest has perfect
linear relation to the aux. vector

We propose diagnosic tools (Sessions 23,2 4).

22



Questions that we shall consider in
the following sessions :

What aux. vector should we use?
How do we evaluate different
choices of aux. vector ?

A comment on auxiliary vectors

Almost all vectors we are interested
are of the following type :

It 1s possible to specify a constant vector p
such that p'x; =1 forall k£

23



Example 1: A continuous x-variable

X =, xg)
Take n=(1,0)
The property is present :

nwx, =Ix1+0xx, =1 forall £

Example 2 : The classification vector

x, =¥, =(0,..1,...,0)
Take n= (1,...,1,...,1)'
The property is present :

wx; =1 forall £

24



Equivalent expressions for nearbias

for the x-vector type p'x; =1 forall &

nearbias (YW) =
O -2 yeok
Gy (%) Bye-By)

(i) Y, ©OuMy ~Dy

We now comment on (i1) ; we need (ii1) later .

Expression (ii) :

nearbias (YW) = (ZU Xk),(BU;G _BU)

By.g = (ZUekaX'kTIZUOkaYk weighted

By = (ZU xkx’leZU X Vi unweighted

25



nearbias (¥, )= (3, x;) (B0 ~By)

This shows nearbias as a function of the
difference between two regression coefficients

Interpretation: NR causes systematic error in the
estimated regression relationship (reason: ‘non-
random selection’). We would like to estimate the
ordinary regression coefficient B, , but because

of NR we obtain an estimate of B U6

What is the nearbias under conditions 1 and 2 ?

Condition 1: yi =PB'x; forall keU
—> By,p=By and nearbias=0

Condition2: ¢ =A'X; forall keU

= (Xyxi) (Byg—By) =0 (show thish)

and nearbias =0

26



Comment on terminology

We do not need concepts such as

MAR, MCAR, ignorable NR,
non-ignorable NR

In our view : All situations non-ignorable.

27
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2 3
Selecting the most
relevant auxiliary information

r XEustat

Auxiliary information can be used both

at the design stage
and

at the estimation stage




The design stage

Commonly used sampling designs
 Simple random sampling (SI)

» Stratified simple random sampling
(STSI)

* Cluster sampling
» Two-stage sampling

* Probability-proportional-to-size

The estimation stage

Two important steps in building the
auxiliary vector:

(i) making an inventory of potential
auxiliary variables

(ii) selecting the most suitable of these
variables and preparing them for entry
into the auxiliary vector




Inventory of potential auxiliary variables

Example of an extensive data source:
Sweden’s Total population register (TPR) :
A complete listing of the population of
individuals (around 9 million)

Some of the variables in TPR:
Unique personal identity number, name and

adress, date of birth, sex, marital status, country
of birth and taxable income.

Recall:

If the nonresponse is considerable and not
counteracted by effective adjustment then

(i) the squared bias term is likely to dominate the
MSE

(ii) the possibilies for valid statistical inference
are reduced; valid confidence intervals cannot
be computed




Guidelines for the construction of an
auxiliary vector

Principle 1: The auxiliary vector (or the
instrument vector) should explain the inverse
response probability, called the response
influence

Principle 2: The auxiliary vector should explain
the main study variables

Principle 3: The auxiliary vector should identify
the most important domains

Principle 1 fulfilled:

The bias of the calibration estimates reduced
for all study variables

Principle 2 fulfilled:

The bias is reduced in the estimates for the
main study variables, and the variance is also
reduced




Principle 3 fulfilled:

For the main domains, both bias and variance
will be reduced

The general formula for the nearbias (Session 2-2)
can guide our search for a powerful auxiliary
vector. It also answers the question:

When is the nearbias = 0, for a given estimator ?
Let us look at some traditional estimators.

Standard specifications assumed, unless otherwise
stated.

The x-vector is a ’star vector’ in most of these
examples




Prospects for zero nearbias
with traditional estimators

Expansion estimator:  Ygxp =N Yr:d

Auxiliary vector: xg =1

Zero nearbias if
(i) ¢y =a forallkeU  orif
(i) Yk =o forallk eU

- - - ~ P ~
Weighting class estimator: Yy = pz_lN pYrp:g
Population weighting adjustment estimator:

A P
Ypwa= 2 NpVr,.d
p=1
Aux. vector Xk =Yk = class indicator vector

Moon vector for Yyc , Star vector for Ypya
Zero nearbias if

(i) Yk =Bp forallkeU




Yr:d

Ratio estimator:  Ypa = (3 Xk)
Xr;d

Auxiliary vector: Xk = Xk

Instrument vector: Zy = 1

Zero nearbias if
(i) ¢k =a forallkeU or if

(i) Yk =a X forallk eU

Separate ratio estimator:

P
Ysepra = 2. QU ) Xk ) .
p= pid

er;d

Auxiliary vector: Xk = XkYk
Instrument vector: Zk =Yk

Zero nearbias if

(i) ¢k=ap forallkeU, orif

(i) Yk =0p Xk fOI’a”kEUp




Regression estimator:
YReG = N{¥r:d +(xy —Xr;d )Br;d}

Auxiliary vector: Xk = (L xg)’

Zero nearbias if

i) Ok =a+bxg orif
(i) Yk =o+PXk

Separate regression estimator:

YSEPREG =
> Np o | B |
= pZlep er;d + XUp —er;d Brp;d

Auxiliary vector:  xp = (vk, XkYk)'
Zero nearbias if
n Pk =ap +bpXxg orif
(i) Yk =0p +BpXk forallk eU D




Two-way estimator:

YTWOWAY (expression somwhat complicated)
Auxiliary vector: x = (yk,0k)’

vy indicates classes p=1,..., P;
d indicates classes h=1,..., H
Zero nearbias if

0 ¢k =ap+by or if
(i) Yk =0p+Ph

Conclusion:

Best suited for fulfilling Principle 1:
SEPREG or TWOWAY

Best suited for fulfilling Principle 2:
The same two vectors

Worst : For Principle 1, EXP and RA .
But RA is better than EXP for Principle 2.




Monte Carlo simulation

10,000 SI samples

each of size n=300 drawn from
experimental population of size N =832,
constructed from actual survey data :
Statistics Sweden’s KYBOK survey

Elements classified into four administrative
groups; sizes: 348,234,161, 89

Monte Carlo simulation

Information: Forevery k € U, we know
* membership in one of 4 admin. groups

» the value Xk of a continuous variable
X = sg.root revenues

We can use some or all of that info.

Study variable: 'y = expenditures

10



Monte Carlo simulation

We used two response distributions, called:
(1) Logit
(2) Increasing exponential

Average response prob.: 86% (for both)

Response probability © increases
with X and with y

Corr. between y and 0 :
~ 0.70 (logit) ; ~ 0.55 (incr. exp.)

Monte Carlo simulation
measures computed

RelBias =100 [Ave(My ) -Y1/Y

10,000
Ave(My )= 2. Yw¢j)/10,000
=1

1 10,000['\ N ]2 8
Variance= ——— Yw (i) — Ave(W -
9,099 jZ::]_ Wy~ AveCiw)f 10

11



Monte Carlo simulation ; logit response
Estimator RelBias Variance
Expansion (EXP) 5.0 69.6
Weighting Class (WC) 2.2 59.4
Population Weighting 2.2 37.1
Adjustment (PWA)

Ratio (RA) 2.5 275
Regression (REG) -0.6 9.5
Separate Ratio (SEPRA) 0.7 11.8
Separate Regression -0.2 8.1
(SEPREG)

Two-Way Classification 0.5 21.7
(TWOWAY)

Monte Carlo simulation ; increasing exp. response
Estimator RelBias Variance
Expansion (EXP) 9.3 70.1
Weighting Class (WC) 5.7 57.7
Population Weighting 5.7 36.3
Adjustment (PWA)

Ratio (RA) 3.9 26.1
Regression (REG) -2.7 8.1
Separate Ratio (SEPRA) 2.0 11.3
Separate Regression -0.8 7.4
(SEPREG)

Two-Way Classification 0.5 20.3
(TWOWAY)

12



What do we learn from the simulations ?

Bias \L when the auxiliary vector
‘gets better’ (more informative)

Variance also \L , as expected

For ex., SEPREG clearly uses much
more information than EXP or RA

We want to be more precise about ‘informative’
This will follow .

The search for a powerful auxiliary vector

Principle 1
Tool 1.1: Nonresponse analysis
Tool 1.2: Bias indicator q2
Principle 2

Tool 2.1: Analysis of important target
variables

Tool 2.2: Indicator IND2

13



A new indicator (not yet published)

We have developed a new indicator,
denoted H, , which takes into
consideration both Princi;:)le 1 and Principle
2. H, isaproduct of q° and a factor
depending on the relation between the target
variable y and the auxiliary vector.

Thatis, H, =0° x f(y,x)

Some further tools

- Transforming the auxiliary variables
- Choosing a powerful instrument vector

- Analysing the distribution of the weights
(for ex.: any extreme weights?)

14



Tools for Principle 1

Tool 1.1: Nonresponse analysis

Example 1. The Survey on Life and Health

(postal survey; Statistics Sweden)

Age group 18-34 35-49 50-64 65-79
Response rate (%) 54.9 61.0 72.5 78.2
Country of birth Nordic | Other
countries
Response rate (%) 66.7 50.8

15



Income class (in 0-149 |150-299 | 300-
thousands of SEK)
Response rate (%) 60.8 70.0 70.2
Marital status Married | Other
Response rate (%) 72.7 58.7
Education level Level 1 |Level 2 |Level 3
Response rate (%) 63.7 65.4 75.6

16



Conclusions from this nonresponse
analysis:

- The response propensities vary quite a lot
between groups

- Without any weighting, one expects a
disturbingly large nonresponse bias

- Some of the presumptive auxiliary variables
are related, for example, income and education
level. What is the simultaneous effect? Should
both be used or just one?

Tool 1.1 Nonresponse analysis

Example 2: The Swedish National
Crime Victim and Security Study

(telephone interview survey)

Sex Male |Female
Response rate (%) 73.1 78.1

17



Age group 16-29 | 30-40 | 41-50
Response rate (%) | 76.8 | 74.6 75.0
51-65 | 66-74 | 75-79
76.2 76.1 71.0
Country of birth Nordic Others
countries
Response rate (%) 77.7 57.8
Marital status Married Others
Response rate (%) 78.3 73.6
Big cities/others Big cities | Others
Response rate (%) 72.1 77.6
Income (in 0-149 150-299 300-
thousands of SEK)
Response rate (%) 69.9 78.1 82.2

18



Conclusions from the nonresponse
analyses:

The two surveys show a very similar
response propensity structure.

This agrees with a general conclusion (seen
also in other surveys). But sometimes the
survey topic (respondent’s interest in the
topic, for ex.) can affect the nature of the
response propensity.

We seek an indicator for Principle 1 that
gives us information on the simultaneous
effect of the auxiliary variables.

L

(Described in Session 2_4)

19



Tools for Principle 2

Tool 2.1: Analysis of important target variables

Example: The Survey on Life and Health

Four important dichotomous study variables
(attributes) are :

(a) Poor health
(b) Avoiding staying outdoors after dark
(c) Difficulties in regard to housing

(d) Poor personal finances

20



Auxiliary variable: Sex

Attribute [Male |Female
(@) 7.5 8.9
(b) 7.8 21.1
(c) 2.6 2.4
(d) 19.6 19.8

Auxiliary variable: Age class

Attribute | 18-34 | 35-49 | 50-64 | 65-79
@) 43 | 66 | 106 | 109
(b) 11.8 | 114 | 143 | 234
© 59 | 28 | 10 | 08
@ 31.0 | 266 | 125 | 96

21



Auxiliary variable: Country of birth

Attribute [ Nordic Other
countries
@ 8.0 11.7
(b) 14.7 18.3
(©) 2.4 4.2
19.2 28.5
(d)

Auxiliary variable: Income group (in
thousands of SEK)

Attribute || 0-149 | 150- | 300-
299

() 10.0 7.2 4.0

(b) 186 126/ 81

(c) 3.8 1.5 1.0

(d) 25.3 16.5 6.9

22



Auxiliary variable: Marital status

Attribute | Married |Other

(a) 8.2 8.2
(b) 13.8 16.3
© 1.1 4.3
(d) 14.1 26.5

Auxiliary variable: Education level

Attribute | Level 1 |Level 2 |Level 3

(a) 10.5 7.3 4.6
(b) 19.1| 126| 129
(€) 1.7 3.2 1.8
(d) 17.5 21.6 16.8

23



Conclusions from the analysis of important target
variables:

- Sex important for explaining variable (b)
- Marital status important for variable (d)

- Age class and country of birth important for most
of the four variables

- Income group and education level are both
Important, but seem to give almost the same
information

- Question arising : What is the simultaneous
effect of these aux. variables?

Thus, we seek an indicator for Principle 2 that
can inform us about the simultaneous effect of
the auxiliary variables.

Recall: The NR-bias of YAW will be small if

the residuals from the regression of y on x
are small.

24



Tool 2.2: Indicator IND2

IND2 measures how close the residuals are to zero:

2 r dkVsk (Yk —91)?

IND2 = 1- 5
Zr diVsk (Yk — Yr:dv)

where

, -1
and
~ ' r -1
Y :Xk(zrdkvskzkxk) > Ve z, Y,

Some empirical evidence follows in Session 2_5.

Further tools
Transforming a continuous auxiliary variable

» Forming size groups based on the variable
values (often a very useful practice)

e Transforming the value of xy . We may prefer

xor Inxy

25



Further tools

Choose a "powerful” instrument vector

We know that the near-bias is zero if

¢k = 1+24'zy holds for k eU and some

constant, non-random vector A.

Thus, we should try to find
”the best instrument vector” !

Example:
Suppose X is a continuous aux. variable.
Consider the auxiliary vector Xk = Xk

and an instrument vector of the form

ZK = X&_v

where the value of V is to be suitably determined

26



1-v

The nearbias is zero if ¢k =1+a Xk

where a Is a constant

If we believe that the response probabilities
are constant through-out the population
then v =1 is an appropriate choice.

b RA-estimator

If we believe that ¢ increases with

X, we should use a value v<1.

Further tools

Analysing the weights

Some weights too large?

- Could make the estimate for some
domains too large

- The variance estimator may deteriorate
Some weights negative?

- Most users dislike negative weights

27



Our recommendations

(i) Make an inventory of potential aux. variables

(if) Categorize the continuous aux. variables

(iii) Calculate g and IND2 for different aux.
vectors

(iv) Calculate the weights v} for the "best” aux.
vector

(v) If some of the Vi are negative or ’too large”,
drop the aux. variable that has the smallest

effect on g2 (or on IND2).

Sample-based selection of auxiliary variables
may affect important properties of the estimator

”The choice of stratification variables cannot be made
solely on the basis of the available observations.
Over or under-representation of some groups can
mislead us about the relationship between the target
and the stratification variable. There has to be
additional information about the homogeneity

of the target variable.”

(Bethlehem, 1988)
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Examples of
sample-based selection of auxiliary variables

» collapsing of groups
e restricting or "trimming” the weights

* avoiding near-colinearity by excluding
unnecessary auxiliary variables

29
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2 4
A bias indicator

Eustat

Intuitively, the better the aux. vector xy,
the better the calibration estimator :
Smaller bias , smaller variance .
* How can we analyze this more precisely?
* How do we construct the aux. vector ?

* We may have access to many aux.
variables; how do we choose ?

 Primary objective here : reduce bias !




This session and the next are based on the article :

C.E. Séarndal and S. Lundstrom (2008):
Assessing auxiliary vectors
for control of nonresponse bias

in the calibration estimator.
Journal of Official Statistics, 24, 251-260

We consider aux. vectors of the form:

nxy =1 forall k




Recall : We have seen three
expressions for nearbias

Expression (ii) :

nearbias (YAW ) =(, x,)'(By,, —By )

Recall : Xk Z{XKJ

Xk

Now consider
expression (111)

nearbias (Y ) = 2, 0xMy —Dyx
where
My = (Zy xk)'(Xy Okxkxk) ™ xk

vector defined over U

M, is a scalar value, unknown, linear in x,




The value M depends

%
on the aux. vector xk:[xj

on the response prob. 0,
but not on the y-variable

Examination of Mk , k € U, helps
understanding the bias

Recall : nearbias =0 if

influence ¢ =1/9k =AxK ,all keU

For this ideal (non-existent) aux. vector, we have

My =g forall K (exercise: show this !)
= kMg =1 = nearbias=0

For a less than ideal aux. vector,
M, is an optimal predictor of ¢ ,
as we now show .




Properties of I\/Ik

Prop' erty 1. M, isan optimal predictor
(estimate) of the unknown influence ¢,

Proof : We want to predict (estimate) the
influences, because this would give

Y =3 dpdk Yk

as a good substitute for the unbiased
(but unrealizable) estimator

Y =3 dkék Yk

Weighted LSQ prediction :

Let x, be a fixed aux. vector. Determine ¢
as a linear function of Xy, so as to minimize

ror \2
WSS =3 6k (& —Mxk)
Minimize WSS ; find best A, say, A=A
= Predicted influence : @ = A'xg = My

Recommended exercise : verify the details !




We have concluded :

M, is the best predictor (for the given
aux. vector) of the influence ¢ .

For the trivial aux. vector, Xk =1 forall k
YAW =N yl‘;d =YAEX|:) (Expansion estimator)
and My =1/0y forall k

—, nearbias(Nyp.q) =
DU kMg =Dyk =N(Yup - Yu)

YU:0 —YU = weighted minus unweighted mean

Recall notation

weighted mean U0 =75 0y

unweighted mean YU ="y




Properties of M,

Property 2. Mean and variance of M
Weighted mean :
_ oM N 1
My.o = 2.0 %Mk _
ZU Ok ZU Ok U
Weighted variance :
Vi 2
2y MMy
U;0 ZU Ok
(ins simpler notation)
We have Q%= My.q (My ~My.p)

2
SI\/I

Properties of Mk

Property 3. The variance Q2 of the M is
approx. linearly related to the nearbias :

Suppose we compare YAW (with any xy)
with its simplest form N y.q =Yexp (Xk =1)

Consider the nearbias ratio :

nearbiasOfW) B ZU OkMg —-1yk
nearbias(N V.q ) N (Yu 0~ Yu)

Objective : Choose X to make it small !




Properties of M,

One can show (details not given here) :

nearbias(\fw ) Q2
nearbias(N ¥r.q) ~ B Q2
sup

Qszup = (1/6U )(%U _1/6U)

is the value of Q2 for the ideal (unattainable) case

where

# =1/0, =A'x¢ ,all keU

Q2
Note : 0<1 - 5 <1
qup

Conclusion : In the choice between different
aux. vectors, we should select the one that

maximizes the variance Q2 of the My

But Q2 cannot be computed ; the values M,
involve sums over the whole population U ,
and contain unknown 0

We replace the Mg by computable analogues




Sample-based analogue of I\/Ik

Replace unknown population sums in M,
by corresponding computable estimates

= My = (Tg i) (Z diexiexi) ™ xi
This scalar value, defined for kes, depends
* on the sampling design
* on the outcome of the response phase

« on the choice of aux. vector x;

Sample-based analogue of Mk

For k € s, we can compute

My = diexi) Y diexiexio) ™ xi

We can compute the (weighted) mean and
variance over I :
Mg = !
o 2 dk

2 1 2
= dp(m —Mp.q)
4TS 2. Ok (M =M

2 dmg




An analysis shows

_ 2 dkmi 20k _ 1

My = -
rd >rdk 2 ,dk  (weighted) response rate
Hence the mean of M, is the same for every

aux. vector X,. But the variance depends on
the aux. vector (short notation q2 ) :

2 1 S d = 22
e S k(Mg —=Mr.g)” =9
m|r;d Zrdk r

Some properties of q2

1. q2 is a variance, hence non-negative

2. Alternative expression :
2 _
q~ =My,q (Ms.g —Mr.q)
3. The simple aux. vector x, =1 gives q2 =0

4. When new variables are added to the aux.

vector, the effect is an increase in the value of q2

(compare R? in regression analysis).

10



Practical use of q2

For low bias, choose X, to make 0 large.
The reason: The bias ratio is

nearbias(YAV\/) ~ 1 - Q_z
nearbias(N Yy.q) Qszup

where Q? is the (unknown) variance of M, .
Ideally : choose X, to make Q? large.

Now 02 is an estimator of Q?

= Choose x, so as to make
the computable ‘indicator’ ¢? large.

Thus ¢? is a useful tool for comparing x-
vectors, to find “the best one” (the one giving
lowest bias)

We can regard m, as a “proxy value” for the
unknown influence.

The more the my vary (within limits), the better
the prospects for small bias in the calibration
estimator.

We call q2 a “bias indicator”

Empirical illustrations
in the continuation of this session.

11



Comparing different aux. vectors

Suppose a supply of X-variables is available
for the survey. Our objective : Build a good
aux. vector from this supply.

» Stepwise forward
Start with the simple vector x, = 1;
add one X-variable at a time

» Stepwise backward
Start with all available X-variables ;
eliminate one at a time

Procedure for comparing different aux. vectors

Stepwise forward
Start with the simple vector x, = 1;
add one X-variable at a time

Step 1. Compute q2 for all vectors of
the form (1, X, ), where X, is one of the

available x-variables. If there are J
available X-variables, we get J values of

qz. Keep the X-variable that gives the
largest of these values.

12



Procedure for comparing different aux. vectors

Stepwise forward

Step 2. Add a second x-variable,
namely, the one that gives the largest

increment among the J—1 computed
new values of q2.

And so on, in steps 3, 4, ...

A note on the case where the weights are
computed with an instrument vector.

Then YAW = Zr Wi Yk instrument

with Wk =dvg =dg (1+Ayzk)

where 7\",’ = (X—Zr di Xk ),(Zr dxzk xk )_1

Xk:(XﬁJ ) X - Zuxﬁ
Xk > dix

13



Then we define instead m, as
' ¢ 1
mk:1+(XS_Zrdek)(Zrdeka) Zk

with X, = {stkka
> dkxk

Then compute q2 as the variance of these
values m, ; then proceed as before, with
stepwise construction of the aux. vector .

A note on the approximation of

) ) nearbias(,
the bias ratio (w )

nearbias(N Yr.q)
More precisely, we have
2
Q.
2
sup

nearbias(YAW ) =nearbias(N Yp.q)x(1- ) + A

What is the size of A ?

We have A:ZU ekMkEk

: — - yu - yu :0
with E =v —V — — Z- o8
=Y~ Yo @ —4,) . —1/0,

14
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A bias indicator,
continued
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Recall from Session 2 4 :

nearbiaS(YW ) _ (1 _ Qz) + A
nearbias(Ny,) Qszup
where

qup 1S a constant,
A 1s aresidual term
Q2 1s a function of Xk and Oy
2

0” is an estimator of Q2




The indicator CI2
is computed from the values X, ; K € .

It does not depend on the y-variable.

Comparing aux. vectors : We have
reason to believe that the vector with the

largest q2 gives the smallest bias.

Important practical questions :

Does qzorder the aux. vectors in a
“correct” way

e onaverage ?

» for every possible sample?

No, not always because...

g~ is subject to sampling variability

and

/A  is not always small (depends on Y)

Let us look at some simulations.




Monte Carlo simulation

Population of size N = 832, derived from
Statistics Sweden’s KYBOK survey
(see Session 2_3).

Information: Forevery k € U, we know
» membership in one of 4 admin. groups
» the value of a continuous variable

X = sqg.root revenues

Study variable: y = expenditures

Monte Carlo simulation

We used two response distributions, called:
(1) Logit
(2) Increasing exponential

Average response prob.: 86% (for both)

Response probability 6 increases
with X and with Y

Corr. between Y and 0 :
~ 0.70 (logit) ; ~ 0.55 (incr. exp.)




I. Monte Carlo simulation

Measures computed as averages over 10,000
repetitions (S, I) ; size of every S: n= 300

Aveq2 = Average of q2 X 103

AvelND?2 = Average of IND2 x 102

RelBias =100 [Ave(My)-Y]/Y

10,000

Avefy)= Y Yw(j) /10,000

J=1

Response distribution: Logit

Estimator Aveqz AvelND2 | RelBias
EXP 0.0 0.0 5.0
WwC 2.7 433 2.2
PWA 2.7 433 2.2
REG 2.2 83.4 -0.6
SEPREG 6.0 88.1 -0.2
TWOWAY 5.7 67.4 0.5

The estimators are described in Session 1_8




Response distribution: Increasing exponential

Estimator Aveq2 AveIND2 | RelBias
EXP 0.0 0.0 9.4
WC 3.4 42.3 5.7
PWA 3.4 42.3 5.7
REG 9.4 81.7 2.7
SEPREG 18.3 88.1 -0.8
TWOWAY 18.0 67.1 0.5

The estimators are described in Session 1_8

This simulation shows :

* a clear tendency (although not a perfect

relationship) that larger values of Aveq2

accompany the estimators with small bias

» that the relationship between y and X has an
effect on the bias. %

Example: Aveq2 is larger for WC (and PWA)
than for REG , but the RelBias is smaller. This is
explained by the fact that AvelND2 is smaller
for WC (and PWA) than for REG.




I1. Monte Carlo simulation

For every possible sample, does q2
correctly order the auxiliary vectors?

We examine four of the six estimators: SEPREG,
REG, WC and EXP.

q2 is random; it depends on the outcome (S,r).
For every outcome, we can rank the four estimators
by their value of q2. The perfect ordering would be

9> (SEPREG) > q*(REG) > q*(WC) > g (EXP)

because this is the ordering based on the
absolute value of RelBias

Reasons for using only 4 of the 6
estimators in the study :

(1) WC and PWA have the same nearbias

(11)) SEPREG and TWOWAY have almost
the same nearbias




For each repetition (S,r), we rank order the
estimators by the size of q2, and assign rank

values : 1 (to the estimator with the largest qz),
2,3 and 4 (to the estimator with

the smallest qz).

We then compute the average rank ordering
(AveOrd) over the 10,000 repetitions.
The results are shown in the following pictures.

Response distribution: Logit

Estimator Aveq2 AvelND2 | RelBias | AveOrd
EXP 0.0 0.0 5.0 4.00
WC 2.7 433 2.2 2.40
REG 2.2 83.4 -0.6 2.60
SEPREG 6.0 88.1 -0.2 1.00




Response distribution: Increasing exponential

Estimator Aveq2 AvelND2 | RelBias | AveOrd
EXP 0.0 0.0 94 4.00
WwWC 3.4 42.3 5.7 2.97
REG 9.4 81.7 2.7 2.03
SEPREG 18.3 88.1 -0.8 1.00

This simulation experiment shows:

* SEPREG always (in every sample) receives
rank 1 (agreeing with the fact that its bias is
the smallest)

* EXP always receives rank 4 (and it has the
highest bias)

» Between WC and REG, the pattern is not
clear-cut. One important reason is that the
relationship between y and X has an effect.




Use of the bias indicator q2 n
the Swedish National Crime Victim and
Security Study  (a telephone interview survey)

Survey objective: Measure trends in certain
types of crimes, in particular crimes against
the person.

Sampling design: STSI of 10,000 persons
(strata: 21 regions (’ldn”) x 3 age groups)

Overall response rate: 77.8 %

Statistics Sweden’s data base LISA contains
many potential auxiliary variables.

For example:

Type of family, number of children in different
age groups, education level, profession, branch of
industry, number of days with illness, number of
days of unemployment, number of days in early
retirement pension, income of capital, and so on

How do we select ?




Preparation:

(1) An initial set of potential auxiliary
variables was selected by a subjective
procedure

(i1) Aux. variables were used at the sample
level (moon variables)

(i11) Continuous variables are used as grouped;
all variables used are then grouped.

The use of q2 as a tool for stepwise
forward selection of variables:

- In each step, the auxiliary vector
expands by adding the (grouped) i/ariable
causing the largest increase in (

- Variables enter in the “’side-by-side”
manner (or ’+)

10



Results

Auxiliary variable Number | Value of
Step entering of groups 1000 q2
e 0
1 Country of birth 2 20.0
2 Income group 3 27.6
3 Age group 6 31.3
4 Gender 2 35.1
5 Marital status 2 38.6
6 Region 21 40.7
7 Family size group 5 41.4
8 Days unemployed 6 41.9
9 Urban centre dweller 2 42.3
10 Occupation 10 42.7
Observations :

* Successive increases in C|2 taper off (as
expected).

* It seems hardly motivated to go beyond
the sixth variable (region)

11



The final choice of auxiliary vector was :

Region+gender+age group+country of birth+
+ income group-+urban centre dweller
Principles that also played a role :

(1) The auxiliary vector should be robust. The survey will be
conducted yearly; the client prefers having the same
vector over time.

(i1) The auxiliary vector should contain region and age
group, because they identify the most important domains.

(i11) An auxiliary vector should well explain the (main) study
variables

12
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Variance and variance
estimation for calibration
estimators

Eustat

NR causes both
* a problem due to bias
and
* a problem with variance estimation
(which we now discuss)




Recall from Session 1 5:

The accuracy has two parts :

2 ; ; 2
MSE pq(fw) = Vp(¥) + Equ(YW\s)+Ep(BW|S)

due to due to NR
sampling

Y is the full response estimator

A serious problem: the bias component Ej (szv \s)
may be large

The variance of the calibration estimator YAW

Assuming that B\N\s = Eq((\fw —\f)\s)z 0

the variance is the sum of
two components :

* Sampling variance ~ Vgap =Vp(Y)
Y is the full response estimator

« Nonresponse variance VNR = EpVq(Yw ‘3)




The variance of the calibration estimator

VNR s the additional variance incurred by
getting fewer observations than desired.

NR increases variance.

We can always ‘oversample’ to counterbalance
the increased variance .

The more serious consequence of NR is
the systematic error (the bias).

Objective:
Obtain valid confidence statements

so that YAW + 24/9 /V(YAW)

with

2,7 =1.96

gives = 95 % confidence .

We can count on approx. normal distribution,
but a non-negligible bias would distort the
confidence. The interval may become invalid.




Objective:
Obtain valid confidence statements

It is obvious that

Y, £ 1.96,V (Y, )
can give = 95 % confidence

only if bias(Yy) fairly small _
compared with the estimated stand.dev 4V (Yyy )

A bad situation : bias > stand. dev.

distribution of Y,

stand.dev. of YAW W\

- bias——

\

true value Y mean of YAW

In this case, coverage of conf.int. = 0




We proceed under the assumption that we have
succeeded in reducing the NR bias to modest
levels (by the methods seen in earlier sessions).
We shall construct an estimator of

the variance V/ \™m

by estimating each of the two components :

Vsam TVNR =Vp(YA)+ EpVq (YAW ‘S)

We create an estimator of each component ,
VSAM and \iNR

then add them to get an
estimator of total variance :

V()= Vsam +Var
We do this under very general conditions :
 any sampling design

. Xk

* any auxiliary vector xy =|
X
k




A dilemma
for the variance estimation

Estimating the variance components

runs into the same problem as the point
estimation :

The y-data available only for the response
set are ‘not representative’, because of
non-random NR.

Unknown influences ¢ =1/0y

Comment

Variance estimation
1S a more sensitive issue
than point estimation .

Variance implies squared numbers;
more sensitive to weighting .




An approach to variance estimation

Had the influences ¢, =1/0,

been known, we could have used
the two-phase GREG estimator

1

YerREG2ph = 2, dk B Jok Yk

Given that the 0 K are known, we know
the expression for the variance, and how to
estimate it.

We note now that
the two-phase GREG estimator

n 1
YGREG 2ph = ZrdeQOKYK
is equal to the calibration estimator
Yw = D dikViYi
if @ =1/0) =V




The proposed variance estimator for Yy
builds on this identity with the
two-phase GREG estimator YGREG 2 ph

The known formula for V (YAGREG 2 ph)

has two components. In those
components, we replace 1/ 0

by the adjustment factor V|
(already computed for the point estimator) .

We thus obtain an ‘ad hoc’ estimator
of each component




Recall: V) =1+ A}xy

where A =(X—Zrdkxk)’(2r dekX'k)_1

and Xk = Xﬁ ; X= ZUXk
Xk > diexk

The procedure gives \iSAM and VANR

Adding them : VO?W)z \73A|v| +\7|\|R

The components will contain two types of
residual (but no regression is ever fitted).
One residual for each component.

The residuals reflect the available
information.




Recall : Auxiliary information statement

Set of units Information
Population U ZU xk known
Sample S xk known, kK €s
Response set I xk and xj known,k er

The residuals for NR variance component are
adjusted for both kinds of aux. info

A */ % o/ o
€ = Yk —Xk Br;gy =Xk Br;gy
Residuals for Sampling variance component are

adjusted only for the “population info™ :

AR */ *

€ =Yk —Xk Br.qv

For details, see the book .

10



B

The regression coefficient is computed as

r:dv — rdv (Z dekaXkT (Z dekaYk)

rdv

Note the weighting :  d k Vk

V| aproxy for the unknown @ =1/0k

To illustrate the general formula
V(Y ) =Vsam +VnR

it 1s a good 1dea to note what the expressions
look like in a familiar situation :

* STSI sampling

* each stratum used as a group
for NR adjustment.

Procedure “simple expansion by stratum”

11



STSI: each stratum an adjustment group.

Xk =Xk =Yk = (V1K oo PPk 50 VHK )"
—(0,....1,...,0Y

The “1” indicates the stratum to which K belongs

STSI: each stratum an adjustment group.

In stratum h ,
N, are sampled from Nh by SI sampling

m,, out of N, are found to respond
The general formulas give the weights

N n
d=—h . h . _ Np
Nh my, My

Recommended exercise : Derive Vi 1n this case!

12



STSI: each stratum an adjustment group.

The general formulas for the estimated variance
components give easily understood expressions :

Estimated sampling variance :

H
7 2,1 1.2
Veam = 2 N -—)S

SAM h§1 h(nh Nh) v

2 . .
Syrh = y-variance computed in I},

(the response set in stratum h)

STSI: each stratum an adjustment group.

Estimated NR variance :

VNR ~ Z N (———)

Makes good sense. It is like “taking M, from N,”

11 11 11
Factors:(—-—)+(—-—)=—-—
nh Nh™ My npo myp o Np

Estimated total variance :

1 )32

A A H 2.1
V(Y,) = X Np (=

13



General formulas
for estimated variance components

The following pictures show
abstract and lengthy general formulas.

They are of particular interest for the specialist in
variance estimation.

The practitioner wants to know ‘if it works’.

The answer is ‘yes’. Software is available, for ex.:

CLANO97 .

Estimator of sampling variance

Veam =
Y. > (didy —dig ) (VieiO)(vo€7)

= > i (di = Dvic (v =1) ()7
with

/
A* % %
€ =Yk —xk Br.ay

14



Estimator of nonresponse variance

p N
Var = 2o, Yk (Vi =D (diéy)
with
ék = Yk —XkBr.gqv =

*/ * o/ o
Yk =Xk Br:dv =Xk Br:dv

The special case Xy = Xk

(only population info)

D>
N %
Il
D>
=
[l

/ * */ _1 %
Yk — Xk (ZrdekaXk J (Zrdekayk)

15



This variance estimation, although not perfect
in all respects, has been shown to work well
(see simulations in the book) .

Caution: Variance estimates are occasionally
unstable, can be sensitive to ‘large weights’.

16
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Estimation in the presence
of both nonresponse and
frame imperfections
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Frame population: Ug  Target population: U

”Persisters”
Up=UnUE)

Overcoverage (UF —Up)  Undercoverage (U -Up)




Frame population: U

Size: Ng Target population: U
\ np Si/ze: N
O\p_, :
/ Sample: Sg
‘ _ [ Size: ng
Ip
Op
OF =0p U O\p

The estimation procedure needs to deal
simultaneously with sampling error,
nonresponse error and coverage error.

Not a trivial step to accomodate the third
kind of error and derive a firmly established
methodology!

Few ”conventional methods” to compare with.




Problems:

» the absence of observed y-data from the
undercoverage set

* the absence of correct auxiliary vector
total for U

« difficulties of decomposing the
nonresponse set O into its subsets Op
and O\ p, for example, identifying the
elements that need imputation

Two procedures for estimating YU

(1) by the sum of (a) an estimate of the persister
total YU P and (b) an estimate of the

undercoverage total Y —U o)

(11) by direct estimation of the target population

total Y|y




i) a. Estimation of the persister total Y|y P

The persister set Up is a domain of U
and the corresponding response sets are I'p

and g =Ip U Np

Let us define

yk ifkeUp=UnNUEg
YPk = :
0 otherwise

yk

YUpw = e WkYPk = 2, Wk Yk

where W) = dek and

Vk—

' 1
1 (S x-S o) (B dist |




Ex. A commonly used estimator of the
persister total

D NFh
h=1 MPh +MPh

UEg is divided into strata, Ugp, h=1,...,H
STSL: Ngh from N R ; MFh respond

Aux. vector: Xk = Xﬂlz =Tk

1) b. Estimation of the undercoverage total

YU-Up

In the book we do not suggest any particular
method for estimating the undercoverage
total.




i1) Direct estimation of the target population

total YU

Let X denote an approximation of ZU xfz
YUW = er Wk Yk  where

Wy = d kVk and

VK =

o ’ !
:1+(X—ZrP dkxﬁj (er dkxﬁ(xﬁ)T Xk

Ex. A commonly used estimator of the target
population total

0N
Yow =% "% vk
h=1 MPh
Ug 1is divided into strata, Ugp, h=1,...,H

STSI: NER  from NEp s MER respond

Aux. vector:  x = xii =Yk




Variance estimators

are derived with the aid of proxies for

o =1/0k

Let us look at the two cases
(1) Estimation of the persister total
and

(i1) Direct estimation of the target
population total

Variance estimation

Case 1) Estimation of the persister total

where

' |




Ideal: Calibrate from rP to rP U OP
But impossible if Op is not identified

Surrogate procedure: Calibrate from r|: to U m

Variance estimation

Case 11) Direct estimation of the target
population total (two alternatives)

M P =V

where

* * ’( ¥, % ,)’1 *
Vie =1+ (R 2 Xk~ 2 dieXio) ope diexk (xk)') - Xk




@) ¢ =Vpk

where

Vpk =

' -1
=1+ (X, Uop kXk = X dkxk) (X, dixk (xk)) ™ xk

A case study

The survey on ”Transition from upper secondary
school to higher education”

We call it the School Survey.
Important study variables:
(a) The intentions to pursuing studies at university

(b) The university programmes viewed as the most
interesting




Ex. The School Survey

."."
4

U : The third-year students year t
U g: The second-year students year t-1

The estimator used before the redesign

H H N
Yupw = 2 Fho s = Y ypy
P 2 mpp +mpp <P o1 MFp —Fh

At first look one would believe that it is an
underestimation, but it turns out to be an
overestimation for the following reasons:

(1) The overcoverage is considerable greater
than the undercoverage

(i1) The response propensity is very low among
nonpersisters

10



The solution:

~

We discovered a good approximation X
of > xk and estimated the target

population total by the direct estimation
method

Aux. variables:
-’final mark™ at the end of grade 9

- parental variables: level of education, income
and civil status

Some results

* The estimates of totals undergo
considerable change

* Estimates of proportions undergo
little change

* The estimated variances for
proportions were not much reduced

11
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Summing up
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The course has presented ‘a general way of thinking’
about estimation in sample surveys with NR and
frame imperfections :

Estimation by calibration

As a result, instead of a few specific (‘traditional’)
estimator formulas, we have seen a general way to
produce estimators ;

we have focused on the question :

how do we choose an appropriate auxiliary vector,
with the corresponding auxiliary information.




The approach is simple to explain to users.
The approach relies on important statistical
concepts, but a fairly limited number of concepts.

Computationally, the approach is not highly
complex or demanding.

We do believe that survey methodologists (in
particular) need to have a solid understanding of
the theory behind the approach.

As a result, this course has examined the theory in
some detail; a number of theoretical expressions
have been presented.

The course has emphasized that the key to
“conclusions of acceptable quality” in a survey
(with a perhaps considerable NR) is to identify
powerful auxiliary information

for the calibration.

We have specified some tools that are useful in
this search.




We hope you enjoyed the course !

Thank you for listening !




Appendix

Exercises
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Exercise 1

A scenario : Someone in your organization is
seeking your opinion on a survey with NR. He or
she says: “With a sample size of 1,500, we got
1,000 responses, so we still have a lot of data to
base our statistics and our conclusions on. I do not
think the NR is a problem.”

Formulate your response to the person
making this statement.




Exercise 2

A scenario : As a methodologist, you are called
upon to discuss survey NR treatment with a user in
your organization. More specifically, you need to :

» Convince the user about the need for NR bias
adjustment

 Explain to the user (a) the favourable effects of
calibration, and (b) the nature and the properties of
the calibrated weights

Formulate your responses to the user.

Exercise 3

The simulation experiment in Session 1_2
ends with a table titled “Coverage rate (%) for
different samples sizes ...” Explain (with the
aid of basic statistical concepts) why, as a
result of the NR, the coverage rate drops
when the sample size increases, other things
being equal.




Exercise 4

The simplest auxiliary vector
X} = xfz =1
Show that the calibrated weights are
N

> dk

Consequence for SI sampling :  w, =

Wy = dy

N n
n m

m = number of respondents

_N
m

See Session 1_8

Exercise 5

Start from the general formula for the
calibrated weights. Take

*

Show that the weights are W, =dg N /er di

for k in group p, so that the estimator becomes

P
Yewa =2 Np¥r;:d
p=1 See Session 1_8




Exercise 6

Start from the general formula for the
calibrated weights. Take

x =X, = Vi
Show that the weights are
W = d (g i)/ d)
for Kk in group p.
For SI sampling : Wy =———

See Session 1_8

Exercise 7

Consider the weights Wi = dy Vi
where Vi =14+Apzg

' =(X—Z dkx )'(Z dkzk x| )_1
r r Yk Xk r YkZk Xk

where z is an instrument vector

Show that, for any z,, these weights satisfy
the calibration equation

2 WkXk =2 Xk

See Session 1 7




Exercise 8

Invariant calibrated weights are obtained in the
following situation:
 STSI with strata Up ; n, from Ny;p=1,...,P

e 1z, =x, =x, — stratum identifier

Then the initial weights
and
give the same calibrated weights,
namely wx =Np/mp

See Session 1 7

Show this !

Exercise 9

Suppose the correlation between Yy and 0
is 0.6 . Then show that

bias(Yexp / N) = 0.6xcv(6)x Syy

where

cv(0) =Sgy /6y  the coeff. of variation of ©

Syy  thestand.dev.of y in U

See Session 2_2




Exercise 10

Show that
nearbias (Y, ) = — 2, (1-0k)eo
becomes = 0 if
 =1+1'x,

holds forall Kk in U

and some constant vector }\4

See Session 2_2
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