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AURKEZPENA

Estatistikako Mintegi Internazionalak sustatzean, hainbat xederekin bete nahi luke Eusko Jaurlari-
tzaren Estatistika Zuzendaritzak, hala nola:

- Unibertsitatearekiko eta, bereziki, Estatistika Sailarekiko lankidetza bultzatu.

— Funtzionari, irakasle, ikasle eta estatistikaren alorrean interesaturik leudekeen guztien birziklapen

profesionala erraztu.

— Estatistikako alorrean eta mundu-mailan irakasle prestu eta abangoardiako ikerlari diren pertso-
naiak Euskadira ekarri, guzti horrek zuzeneko harremanei eta esperientzien ezagupenei dago-
kienez soposatzen duen ondorio positiboarekin.

Tharduketa osagarri bezala eta interesaturik leudekeen ahalik eta pertsona eta Erakunde gehienetara
iristearren, Ikastaro hauetako txostenak argitaratzea erabaki da, beti ere txostenemailearen jatorrizko
hizkuntza errespetatuz, horrela gure Herrian gai honi buruzko ezagutza zabaltzen laguntzeko
asmoarekin.

PRESENTACION

Al promover los Seminarios Internacionales de Estadistica, la Direccién de Estadistica del Gobierno
Vasco pretende cubrir varios objetivos:

— Fomentar la colaboracion con la Universidad y en especial con los Departamentos de Estadistica.

— Facilitar el reciclaje profesional de funcionarios, profesores, alumnos y cuantos puedan estar inte-
resados en el campo estadistico. .

— Traer a Euskadi a ilustres profesores e investigadores de vanguardia en materia estadistica, a nivel
mundial, con el consiguiente efecto positivo en cuanto a relacion directa y conocimiento de expe-
riencias.

Como actuacién complementaria y para llegar al mayor nimero posible de personas e Instituciones
interesadas, se ha decidido publicar las ponencias de estos Cursos, respetando en todo caso la lengua
original del ponente, para contribuir asi a acrecentar el conocimiento sobre esta materia en nuestro
Pais.




PRESENTATION

La Direction de Statistique du Gouvernement Basque se propose d'atteindre plusieurs objectifs par

la promotion des Séminaires Internationaux de Statistique:

— Encourager la collaboration avec I'université et spécialment avec les départements de statistique.

— TFaciliter le recyclage professionnel des fonctionnaires, professeurs, éléves, et tous ceux qui pour-
raient etre intéressés par la statistique.

— Inviter en Euskadi des professeurs mondialement renommeés et des chercheurs de premier ordre en
matiére de Statistique avec tout ce que cela pourrait entrainer comme avantage dans les rappots et
I’échange d’expériences.

En outre, il a été décidé de publier les exposés de ces rencontres afin d'atteindre le plus grand nom-

bre de personnes et d’institutions intéressées, et pour contribuer ainsi a développer dans notre pays les
connaissances sur cette matiére. Dans chaque cas la langue d’'origine du conférencier sera respectée.

PRESENTATION

In promoting the International Seminars on Statistics, the Statistics Office of the Basque Goverment
is attempting to achieve a number of objectives:

— Encourage joint working with the Basque University and, in particular, with its Department of Sta-

tistics.

— Facilitate the in-training of civil servants, teachers and students and of all those interested in the
field of statistics.

— Bring to Euskadi distinguished academics and researchers in the front line of statistics work, at a
wolrd-wide level, with all the benefits that this will bring through direct contacts and the inter-
change of experiences and ideas.

As an additional step this year, it has been decided to publish in advance the papers to be presented
at these courses, respecting the native language of the speaker, in each case. This is in order that as
many interested people and institutions as possible are made aware. In this way we hope to contribute
to the growth and awareness concerning this topic in our country.

Vitoria-Gazteiz, Diciembre 1984 Abendua

JOSE IGNACIO GARCIA RAMOS
Estatistikako Zuzendaria
Director de Estadistica




SARRERA

Liburu honek, Eusko Jaurlaritzaren Estatistika-Zuzendaritzak eta Euskal Herriko Unibertsitatearen
Matematika Aplikatuko Departamentuak antolaturik, D.J. FINNEY Jaunak Euskadiko Estatistikako II.
Nazioarteko Mintegiaren barruan “Design of Experiments” gaiari buruz eman duen ikastaroa laburbil-
tzen digu. II. Mintegi honek kontatzen du baita Madrileko Unibertsitateko F. AZORIN Jaunaren partai-
detzarekin ere, “Aspectos de Teoria y Aplicaciones en el Muestreo” gaiari buruzko ikastaro batekin.

INTRODUCCION

Este libro resume el curso que sobre “Desing of Experiments” ha impartido D.J. FINNEY dentro del I
Seminario Internacional de Estadistica en Euskadi, organizado por la Direccién de Estadistica del
Gobierno Vasco y el Departamento de Matematica Aplicada de la Universidad del Pais Vasco. Este II
Seminario cuenta ademas con la participacién de F. AZORIN de la Universidad de Madrid con un curso
sobre “ Aspectos de Teoria y Aplicaciones en el Muestreo”.

INTRODUCTION

Ce livre résume le cours donné par D.J. FINNEY sur “Design of Experiments” dans le cadre du II Sémi-
naire International de Statistique d'Euskadi, organisé par le Conseil de Statistique du Gouvernement
Basque et le Département de Mathématique Appliquée de 'Université du Pays Basque. Ce II Séminaire
compte aussi avec la participation de F. AZORIN de I'Université de Madrid avec un cours sur “Aspectos
de Teoria y Aplicaciones en el Muestreo”.

INTRODUCTION

This paper summarises the lecture on “Desing of Experiments” presented by D.F. FINNEY for the II
International Statistic Seminar in Euskadi, organised by the Statistics Office of the Basque Government
and by the Department of Applied Mathematics at the University of the Basque Country. This II Semi-
nar included also the participation of F. AZORIN of the University of Madrid with a series of lectures on
“ Aspectos of Theory and Applications in Sample Statistics”.




BIOGRAFIA

David J. Finney Estatistikako Katedraduna dugu. Estatistika Departamentuko Zuzendaria Edinbur-
goko Unibertsitatean, Britainiar Inperioko Gomendadorea. Britainiar Erret Akademiako kidea. Esko-
ziako Ikerketa Agronomikoen Kontseiluko Zuzendaria. Ronald Fisher Irakasle eta estatistikari ospe-
tsuaren ikaslea. F.A.O. erakundearen adituetako bat Indiako Ikerketa Agronomikoen Kontseiluan
(1952-1973). Unibertsitate-Konputuko Zentruetarako Britainiar Kontseiluko Lehendakaria. Biometric
Society-ko Lehendakaria. Royal Statistical Society-ko Lehendakaria. F.A.O.ren Estatistika-Batzordeko
kide iraunkorra. 1.S.I1.ko bazkide iraunkorra. Royal Statistical Society-ko partaidea. Honoris Causa Dok-
tore Belgikako Gembloux-ko Estatu-Unibertsitatearen aldetik. Honoris Causa Doktore B.H.ko Londres-
eko City University-ren aldetik. Adolphe Quetelet Elkartearen Ohorezko Bazkide. Esperimentuen disei-
nuari buruzko hainbat libururen egile.

David J. Finney es catedrético de Estadistica. Director del Dpto. de Estadistica de la Universidad
de Edimburgo. Comendador del Imperio Britdnico. Miembro de la Real Academia Britdnica. Director del
Consejo de Investigaciones Agronémicas (Escocia). Alumno del prestigioso estadistico Profesor Ronald
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Society. Presidente de la Royal Statistical Society. Miembro permanente del Comité Estadistico de la
F.A.O. Miembro permanente del 1.S.1. Fellow de Royal Statistical Society. Doctor Honoris Causa por la
Université de I'Etat 4 Gembloux (Bélgica). Doctor Honoris Causa por la City University (Londres, UK.)
Doctor Honoris Causa por la Universidad de Calcuta (India). Miembro Honorario de la Sociedad Adolphe
Quetelet. Autor de numerosos libros sobre Disefio de Experimentos.

David J. Finney est professeur de Statistique. Directeur du Département de Statistique de I'Univer-
sité d’Edimbourg. Commandeur de I’Empire Britannique. Membre de I’Académie Royale Britannique.
Directeur du Conseil la Recherche Agronomique (Ecosse). Il a été I'éléve du prestigieux staticien, le
Professeur Ronald Fisher. Il est actuellement Expert de I'O.A.A. dans le Conseil de la Recherche Agro-
nomique de I'Inde (1952-1973). Président du Conseil Britannique pour les Centres de Computation Uni-
versitaires. Président de la Biometric Society. Président de la Royal Statistical Society. Membre perma-
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Society. Docteur Honoris Causa par I'Université de I'Etat a Gembloux (Belgique). Docteur Honoris
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statistician, Professor Ronald Fisher and he was an F.A.O. expert on the Indian Council for Agronomic
Research (1952-1973). President of the British Council of University Computer Centres. Permanent
member of the Statistics Committee of the F.A.O. Permanent member of the 1.S.1. Fellow of the Royal
Statistical Society. Honorary Doctor at the State University of Gembloux (Belgium). Honorary Doctor of
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SAIAKUNTZEN DISEINU ETA PLANIFIKAZIOA

D. J. Finney
Edinburgh University
SCOTLAND

LABURPENA

Finney Profescrearen hitzaldiak haman kapitulutan banatuak doaz, eta esan dezakegu, kapitulu horietan zehar, esperi-
mentuen diseinu eta planifikazioari buruzko Ldeiarnik oinarntizkoenak Lantzen direla berntan, autoreak berak bere ikerke-
ta propioetan Rortutako emaitzekin batera.

Lehen eta bigarren kapitulfuak esperimentuen diseinuaren funtsezko ideiak erakusten dizhigute. Hirugarrenak bariantzen
anakisia aztentzen du, R. A. Fisher-en ideien anabena. lau eta bostgarrienetan, berniz, blokeen diseinuaz eta aldakunt-
zez <{handuten da. Seigawrena diseinu faktornialei dagokie eta zazpigarrena bestelako diseinuel, hala nola, sekuentiza-
Lei, honbinatornied, enrepikakoak, etab. Zortziganren efa bederatzigannen kapitulues dagohienez, entseiu biofegikoen
edo bio-entseiuen funtsezko kontzeptuak garatzen dituzte era Labun batean, 4izan ene hauxe fLantzen eman bait du Fishen
Profesoneak bere bizitzaren zatd handi bat.

Eta azkenik, hamargarnen kapituluan, estatistikarniak esperimentu baten planifikazioan eta garapenean topa ditzakeen
problema desberdinak azalitzen dira.
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D. J. FINKEY

DESING OF EXPERIMENTS

1. DESIGN AND ESTIMATION ;

‘B,

1. INTRODUCTION

My dictionary states that an experiment is an ac- /
tion undertaken in order to discover something that is
unknown. Note the implication that the experimenter has
some freewill: He determines the particular conditions
of experimentation. Thus an early chemist wished to /
know whether burning material required a supply of air.
His experiment was to place a lighted candle inside a /
container and then to seal the container so that no mo-
re air could enter: of course the candle was soon extin
guished. The experimenter applied the treatment of the
sealed container to the subject, a lighted candle. He /
had the power to withhold or to use the treatment, and
indeed to define it exactly in terms of size, shape, ma
terials, etc.

I shall be concerned solely with comparative experd
ments, that is to say experiments in which two or more
treatments are to be compared with one another in res-
pect of some measurable property. Obviously one wishes
to make a fair comparison, ensuring that all other con-

ditions relevant to the outcome are as similar as possi

15

COMPLETE RANDOMIZATION

ble and subjects differ only in the treatments they re-
ceive. Simbolically (in a notation that [ shall later re
place by something more exact), the measurement y for/
two subjects might be represented by
Y = H+ G+F+ H (1.1)

and
y2=M+G+F+T2 (1.2)
for two treatments. each applied to one subject. Here M
is a general mean level, G represents geviations from /

this associated with factors inherent in the subject -in

a biological context, possibly the modification of M/
appropiate to an animal of a particular strain, genetic
constitution, sex, age, etc. - and F represents devia-/

tions associated with environmental factors such as diet
and temperature. Provided that G and F are identical for
the two subjects,the difference between the measurements,
¥y - y2 , is equal to the difference T1 - Tz between the
effects of the treatments.




Two assumptions are implicit here: (i) subjects can

be found for which G and F are identical, and (ii) sub-
jects identical in G, F and treatment will give exactly
the same y measurement. These may be near enough to /
the truth for candles burning in sealed containers.
They are certainly untrue in biological experimentation,
where y may be a measurement of weight or of blood su
gar or of survival time for an animal receiving a speci
fied drug treatment. The equations need to be modified
to

ne- M+ G+F+T, +¢

D. J. FINNEY

YoM+ B+F 4T, v (1.4)
Here G, F now relate to average inherent and environmen-
tal effects for a class or population of very similar /

but inevitably not identical subjects; e are mea-

1* 2
sures of individual variation among subjects chosen to/
be as homogeneous as possible, combined with effects ari
sing from variation in inherent and environmental cha-/

racteristics relative to the mean.

Essentially the same situation arises in many other

1 1 (1.3) branches of science and technology: for example,
Subjects Treatments Measurements
Sufferers from a disease Medicines Time to recovery

Children

Metal sheets
Automobiles
Plots of wheat

We can no longer state that
h-Te=n-Y»

and in general we know nothing about values of €1, €5
Two steps are open to us

(i) Randomization

By allowing chance, a fair lottery, to deter
mine which subject has each treatment, we ensure
that the error in using Yy - ¥, as the value of
T1 - T2 is equally likely to be
2" 4
times, on average the value obtained for Tl-T2 /

€ - or
. If the experiment were repeated many
would be correct.

(ii) Replication

The principle of randomization is one of the
major contributions of statistics to research.
difficul-/
ties. Replication provides the answer. By assig-

Yet in itself it does not remove all

ning several subjects to each treatment, the un-
certainties arising from the ‘“experimental /
errors”, ¢, are reduced. A treatment is now /
assessed in terms of the mean of y for the sub

jects, and the familiar result on variances:

Var{mean of r) = Var(single observation)/r (1.5)

Methods of teaching
Methods of rust proofing
Types of petroleum
Fertilizers

16

«ects may be used to reduce the contribution

Test performance

Amount of rust after 1 year
Consumption for 100 km

Crop yield

is applicable.

Experimental design is concerned with exploiting /
these ideas so as to use available subjects and mate-/
rials to best advantage in minimizing the variance of /
treatment means. In particular, relations among the sub
to error/
arising from differences in the inherent and invironmem-

tal characters of the subjects.
2. PARAMETERS

Let us now formulate these ideas a little more exac-
tly. Suppose that y 1is measured for subject number k /
of those from a group with genetic and environmental cla
ssification i

that receive treatment j. We can rewri-

te earlier equations as

Yign "Mt Byt Tyt gig (2.1)

Here w is a general mean, Bi embodies the previous G

and F and is the deviation from u corresponding to the
average state of the particular inherent and environmen-
tal class used, and 1, is the further deviation associa
(commonly termed the effect of /

treatment j); e as before is the residual error arising

ted with treatment j
from variability within the category i and from varia-
bility of individual subjects, and is labelled with ijk
simply to show its co respondence with the observation /

Yijk




We refer to the Tj (for j = 1,2,...,t if there are
t treatments under discussion - t need not be 2) as pa-
nametens. (This is a much over-used word today, both in
medical literature and by journalists. To the statisti-
cian it has long had a precise meaning as a numerical /
value characterizing a population or a theoretical for-
mulation, usually unknown but requiring to be estimated
from data). In addition to these treatment parameters,
the B;
ment or other background characteristic of the

environ-~/
sub- /
jects; we may often refer to them as bfock parameters.
Also

are also parameters relating to the

u is a parameter for the general mean.

We shall further suppose that the expectation of /
€% is the same for all observations,

E(e?) = o (2.2)
where the parameter o? is the variance { ¢ the stan-
dard deviation) per observation. This assumption or /
constant variance is usually reasonable unless y is /

exceptionally variable, in particular more variable for
some treatments than for others. An assumption that the
¢ have a Normal or Gaussian distribution is net /
needed for the main discussion of design.

3. ESTIMATION

In the simple situation envisaged in Section 1, no
problem of estimation enters. It was implied there that

all subjects have the same , say 81 , so that for /

subjects on different treatments we have
ik " E YT e

Yigk "V Bt Tt e (3.1)

Yz "Mt B T3 Sy
etc.

Evidently if we form means (averages) for subjects on/
each treatment in turn, differences between these means
will estimate differences between the corresponding 1
parameters, as the (u + 31) is common to all.

We shall see that we may want to involve more than
one B in an experiment. There are two reasons - to re
duce the error variance or to broaden the basis for in-
for /

will be much in-

ference. If Bl represents a very broad class,
example all ages of subject, the €
fluenced by variation from sujbect to subject associa-
ted with age. By restricting subjects to a narrow age
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and hence the value of o2
is reduced. By retaining subjects from several

range, the variability of e
distinct
age groups within one experiment, we may hope to give re
sults a broader validity. Thus in humans we might have/
subjects of ages 20-30, 30-40, 40-60, 60-80,
its own B

each with
. Again, in a comparison of fertisizers for
wheat, we might wish for an inference based on several /
different times of sowing.

Consider a very simple example. Suppose we wish to/
study 3 treatments; we might use 4 age groups,l subject
in each:

Treatment (t) Age (B)

X X x (x)

In this symmetric situation, we can still estimate diffe
rences between treatment parameters just as before, ave-
raging over all age groups. Treatments are balanced with
equal numbers from each age group. The same will be true
if we have, say, 9 subjects in age group 2 with 3 on /
each treatment. But now suppoSe only 10 subjects had /
been used - the two in ( ) do not exist. Then simple ave
raging of the remaining subjects may mislead. The avera-
ge for treatment 2 is over all age groups, but that for
treatment 1 omits the youngest subjects. Hence, if y is
a measurement tending to increase with age irrespective
of treatment (e. g. blood pressure), this simple compari
sion will be biased. B

However, we have values of y for 10 subjects and
can write the parametric formulation for each:

.Y211 = H+52 "1’1 + l:211, l

J (3.2)

Y331'U+B3+1 + e

3 331°
etc.
{k = 1 everywhere, as we have only 1 subject in each /
"cell" of the table). How do we choose numerical values

for the parameters so as to optimize agreement between/
observations and parameters? A widely accepted statisti-
cal principle is that of Least Squares: estimate the pa-
rameters in such a way as to make the sum of que squares
of residuals as small as possible (Finney, 1980;
1933). If m, bi’ t.

J
M, Bi' tj,residuals are defined as

Yates,
are estimates of the corresponding




€11 " Y "m0t Yy (3.3)
€331 " Y331 """t o
etc.
The method of estimation is to minimize the sum of the
e2 by suitable choice of numerical values for the para-
meters. I cannot go into detail about the general prin-
ciple, except to say that it has many desirable theori-
with
minimal variance, and, if errors have a Normal distribu

tical properties: it is unbiased, gives estimates

tion, it is equivalent to the fully efficient maximum/
likelihood procedure.

Hence we should write

= 2
Sy - v -8 - T) +lygyy - w8y - )?

+ (y411 - W By - tl)z + oieeen

* . (3.3)

cene ¥ - - - 2

(y331 v - By '(3)
and then minimize S by appropriate choice of values/
for the parameters.

In the simple symmetric situation that I first men
tioned, for each age group 1 subject (or more generally
a constant number of subjects) on each treatment,we can
easily prove that minimization of S reduces to simple
averaging. If m, bi' tj now denote these least squares
estimators, m is the mean of all observations, (m + bi)
i, (m+ t.) is the /
In the absence of symmetry

is the mean of all in age group
mean of all on treatment j .
and balance, the values of m, bi’ ti are less obvious
and must be obtained by solving sets of linear equa- /
tions. But we now have a tractable and sensible numeri-
cal procedure for all cases, although I have left some
details unexplained. These ideas will recur in later /
lectures. The method of least squares underlies the who
le of analysis of variance and multiple regression me-
thodology, but we shall not pursue this very far.

4. COMPLETE RANDOMIZATION

Here and in Lecture II, I assume some familiarity/
with analysis of variance. I shall discuss the general
structure of this analysis and the essential concept of
orthogonality in Lecture III.

which
the available subjects are allocated completely at ran-

The simplest experimental design is that in

dom among t treatment, the experimenter simply deci-
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ding how many shall go to each treatment. For example,/
with t = 5 and 43 subjects available for use, the experi
menter might draw lots so as to allocate 11 subjects to
the first treatment, 6 to the second, 14 to the third, 4
and 8 to the fourth and fifth. I shall discuss the choi-
ce of numbers in Lecture II.

Table 4.1 shows bone ash percentages in chickens on
four different vitamin D preparations. You may think the
conclusions obvious, but the data can illustrate the com

putations. We can calculate a sum of squares of devia-
tions within each treatment:
2 2 2 _ 33 32
T, @ 5,27+ 6.97+ ..... + 6,17 - ===
1 7
= 18.54 (6df)
T2 : 43.56 (5df)
T3 : 53.92 (7df)
T4 : 29.71 (6df)

(I am deliberately not checking all my arithmetic; to /
check and correct it, here and elsewhere, is a good exer
cise for the student!) Combining (“pooling") all eviden-
ce on variance gives the estimate

w
It

(18.54 + 43.56 + 53.92 + 29.71)/(6 + 5 + 7 + 6)
6.072 (24df)

The variance of a treatment mean is 52/r1 » where " /
is the number of subjects. Table 4.2 shows means and /
standard errors. We can form SEs of differences, estima-
te any T - ‘j and put probability limits on it, make
significance tests, and so on at will. I comment only /
that the difference between T1 , Tz and T3, T4 is
questionable, whereas differences within these pairs are

un-
appreciably less than twice their standard errors.

Consider an alternative method of computation, here
having little advantage but important for the future:

(i) Form total sum of squares of deviations for all 28/

observations:

5.02 + 6.9% + ..... +13.12 - (33.3 + 42.9 + 106.0 +
+ 106.5)%/ 28 = 3635.69 - 2976.70

= 658.99

(ii)Form sum of squares “"between treatments" ( explana-/
tion in Lecture III):

2 2 2 2 2
33.3 42.9 106.0 106.5 288.7° _
T *~¢-t*t—3 + =5 -5 " 513.27



Insert these values into Table 4.3, the analysis of va-
riance, and obtain the error sum of squares by subtrac-
same /
, as before, except for arithmeti

tion. This is easily seen to give exactly the
error mean square, s
cal rounding.

Comparision of the treatments and error mean squa-/
res, by a variance ratio test, provides a test of signi
ficance of the null hypothesis "All T, are equal”.
Strictly, the test is valid only if the

1y distributed, but in practice this restriction does /

e are Normal

not matter greatly. Certainly here, where

Comparison of Fo
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F=28.2 with 3.24 df
there is no doubt about significance. However this type
of comprehensive test is seldom important.

In most experiments, the primary value of the analy-
the /
error mean square, this being the basic variance for /

sis of variance is as a procedure for obtaining

use in particular significance tests, in expressing the
/
among parameters, and in calculating limits of error at
stated probabilities.

precision of estimates of parameters and comparisons

TABLE 4.1
ur Vitamin D Preparations

(percent bone ash in chickens}

Treatments T1 T2 T3 T4
Percentages 5.0 5.6 8.7 17.0
6.9 9.0 11.9 16.3
4.6 7.8 13.3 17.2
5.7 2.2 15.9 14.8
1.8 7.6 16.9 16.7
3.2 10.7 15.8 11.4
6.1 11.9 13.1
11.6
Totals 33.3 42.9 106.0 106.5
TABLE 4.2
Summary of Means for Table 1.1
Treatment T1 Tz T3 T4
Mean 4.8 7.2 13.2 15.2
SE $0.93 +1.01 10.87 $0.93
TABLE 4.3

Analysis of Variance for Table 1.1

Adjustment for mean
Variation

Treatments

Error

2976.70
df Sum of squares Mean square
3 513.27 171.09
24 145.72 6.072
27 658.99

Total

19
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11. RANDOMIZED BLOCKS; ACCIDENTS AND SALVAGE

1. COMPLETE RANDOMIZATION: THE EXPERIMENTAL PLAN

Section 1 4 used entirely arbitrary numbers of sub-
jects per treatment. How should these numbers be cho- /
sen? Many different situations can be envisaged. Only /
two will be discussed here.

Suppose that the experimenter is prepared to use N/

subjects in all, r; to treatment Ti fori=1, 2, .../
.» t. Thus

..... +ry =N (1.1)

one ///
might wish to minimize the average variance of diffe-//

If all treatments are equally interesting,

rences between pairs of treatments. This means that the
average value of

~1 4+ 1

Y‘i Y'J'

for all i,j pairs

is to be minimized subject to equation (1.1). A little/
differential calculus shows the minimun to be given by

ry = N/t (1.2)
for all i. That is to say, replicate all treatments e-/
qually. Of course, N may not be an exact multiple of t,
in which case some treatments must have one extra sub-/
ject.

Next suppose that T; is a standard treatment with /
which each other treatment is to be compared, but that/
no interest attaches to differences among the others. /
Then the need is to minimize the average value of

1 + 1
1 "3
still subject to equation (1.1). The answer is less ob-

for all i other than i=1,

vious, though a relatively simple proof leads to

N
1T 1H(t1)

e (R, (1.3)

l"'l’3

In other words, T; should be replicated to a greater
extent than the others by a factor v(t-1). This can -//
seldom be achieved exactly in integers, but a small de-/

20

parture makes little difference.

Thus we see that, for the Vitamin D experiment of /
Table I 4.1, had all comparisons been of equal interest
the optimal design would have had 7 chickens on each -/
treatment. On the other hand, had interest been solely/
in comparison between T, and each of the other three, /
ry =10, ry = r3 = rg = 6 would have been a better plan
(10/6 is close to ¥3). Of course there is no reason to
expect s? to depend upon the rj. The alternatives here/
are not very different. The first arrangement gives a /
variance 0.29 s?
the Tj ; the second makes the variance 0.27 s? for //

for every difference between two of /

T, with any one of the others, 0.33 s2 for any pair of
Tp, T3, Tq . In practice, any advantage in departing -/
from equality of the rs is small unless there are ten /
or more treatments.

2. RANDOMIZED BLOCKS

Table 2.1 shows uterine weights of ovariectomized /
rats that had received one of four preparations of oes-
trone. The available animals were four females from /
each of seven litters. Randomization was within litters:
the four treatments were randomly allocated each to one/
rat in litter [, each to one in litter II, and so on. //
This is a randomized bfock design. The appropriateness /
of equation I (2.1) should be obvious, except that k=] /
throughout and can be omitted: for the rat on treatment/
Jj in litter i

yij=u+8i+'tj+€--. (2.1)

AN

Why do this? One could not obtain 28 rats from a single
litter! A completely randomized design would be legiti-
mate, but then the block {litter) paraments would be //
combined with the error components and thus inflate the/
effective error.

Analysis of variance (Table 2,2) now begins to show/
its merits. The total sum of squares:

0.542 + 0.49%2 + ... + 1.08% - (24.19)%/28 = 2,5757

is found without difficulty. (Again, I leave you to //
check my arithmetic!)

The sum of squares for treatments requires the same cal-




culation as in Section I1, now somewhat simpler becau-
se all are equally replicated:

(4.64% + 7.39% + 5.19% + 6.97%)/7 - 24.19%/28 =

= 0.7671.
Similarly a sum of squares for blocks can be formed:

(3.592 + 2.57% + ..... + 4.75%)/4 - 24.19%/28 =

= 0.9232.
Because of the balance of the design - each treatment/
appears equally often in each block - these two sums /
of squares are independent (in the sense to be ex-//
plained in Lecture III, onthogonal): both can be sub-/
tracted from the total to leave the error with (27-6-/
-3) df, s? = 0.04919.

The comprehensive test of significance for treat-/

ments
F =5.20 with 3, 18 df

leaves little doubt that differences are real. The //
summary in Table 2.3 is much tidier than that in Table
1.4.2 because of equi-replication,and each treatment /
mean has the variance s2/7 = (0.083)2. A difference /
between two treatment means has variance 282/7; multi-
plication of the corresponding SE by 2.10, the 0,95 //
probability value for t with 18 df, gives 0.249 as an/
uncertainly to be attached to any estimated difference.
For example, t2 -7 the difference in parameters be-
tween T, and T;, is estimated as 0.393, and with pro-/
bability 0.95 we assert that the truth lies between /
0.144 and 0.642.

The symmetry of this design is such that the esti-
mates of parameters obtained by least squares are iden-
tical with those resulting from the obvious and uncri-/
tical averaging of data. Thus for a general randomized/
block design with b blocks of t treatments, for which/
(2.1) is still appropiate, the estimates are (as alrea-
dy stated in Section I 3 )

m = mean of all bt values of y (2.2)
b, = (mean of all t values of block i) - m (2.3)
tj = (mean of all b values for treatment j) - m (2.4)

For some of the designs I discuss later, notably in /
Lecture V, estimation is less obvious.

3. TWO COMMENTS ON ERROR YARIANCE

The analysis of variance permits s to be found /
very easily, although the procedure may seem indirect./
It is possible to make a direct calculation, leading to
exactly the same answer, but this is much more 1labo- /

rious.
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Suppose a completely randomized design had been u-
sed with these 28 rats. Inter-litter variability would/
then have gone into experimental error. We can estimate
that the error mean square would have been

(0.9232 + 0.04919 x 21)/27 = 0.07245,

nearly 50% greater than s2 . This indicates taht about
1.5 times as many rats, say 11 per preparation, would /
have been needed in order to obtain the same precision /

(same SEs of means).
4. PAIRED COMPARISONS

One form of randomized blocks commonly used for ex-
periments of simple structure is that with blocks of 2,/
known as paired comparisons. A treatment may be compared
with the control, untreated, state on pairs of subjects
such as two rabbits from the same litter, identical twin
calves, left and right sides of the human body, pairs /
of patients matches for age, sex and severity of disease
and so on. Randomization is exactly as for other rando-/
mized blocks.

Of course, the results can be analyzed exactly as in
Section 2. An alternative is to form the difference be-/
tween pairs of y values, "treated-control"”, for each /
block, and then to do a direct calculation of variance /
on the differences. This is described in many elementary
text books.

The two methods of calculation lead to identical re-
sults, as may easily be verified algebraically.

5. GENERAL COMMENT

Completely randomized and randomized block designs /
are undoubtedly the two most widely used and most impor-
tant experimental designs. Both are of very wide appli-/
cability in almost every field of quantitative experimen -
tation. Moreover, most other designs, some of which 1 //
discuss in later lectures, are generalizations and exten
sions of these ideas.

6. ANALYSIS OF COVARIANCE

Suppose that corresponding to every measurement of /
y there is also a measurement of a variate x that is //
known to have been unaffected by treatment. The most sa-
tisfactory situation is that x was measured before the /
randomized allocation of treatments. For example, x may/
be the weight of an animal before the start of an expe-/




riment, and y 1is to be perhaps the total weight 10 //
weeks after treatment or the weight of a particular or-
gan at this later time. Alternatively, x may be the//
yield of fruit from a tree in 1983, up to which year /
all trees were treated alike, and y 1is the yield in /
1984 after an experiment to compare methods of pruning/
has begun. Although such an x is often a measurement/
of the same kind as the subsequent y , it need not be
- for example, it might be height of the fruit tree; the
only essential feature is that casual connexion between
x and treatment can be logically excluded.

If a suitable x can be chosen and measured, it /
may contain information on that component of variabi- /
lity in y that is not due to treatment. One resona- /

ble approximation is to modify equation (2.1) to

Yig vt By v Tyt 0lxyg - X) ¥ epy (6.1)

{and similar modifications for other experimental de- /
signs), where @ is an additional parameter (estimated
by least squares, of course), and X is the mean of /
all the xjjg- The consecuence of including estimation/
of 8 is to revise the estimation of the treatment pa-/
rameters *J to values representing an equalization in

respect of x

This procedure is known as the analysis of cova- /
niance. Computationally, it is most easily handled by /
extending the analysis of variance table to include two

more columns: one is the analysis of X

, exactly like/
that of y2 , and the second is an analysis of the same
form made on the products xy instead of on x2 or y2.

Then @ 1is estimated as

B = Error sum of products/Error sum of squares for x .
(6.2)

tach tj for y can now be adjusted by
tj (adjusted) = tj (for y) - @ tj (for x). (6.3)
There is an obvious and close connexion with linear re-
gression, which enables variances of comparisons of the
adjusted tj to be formed from consideration of the //
appropriate linear contrasts (Lecture 111). Cochran & /
Cox (1957) show excellent examples. I shall not say mo-
re. The method is valuable, and insufficiently exploted

for use with x-variates that are easily recorded as --/“

part of the experimental process. By analogy with multi
ple linear regression, two or more distinct x-variates/
can be used in a multiple covariance analysis. 1 have /
introduced the subject primarily in order to be able to
utilize analysis of covariance in Sections 7, 8.
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7. MISSING OBSERVATIONS

Even the most careful experimenter occasionally //
losses the value of y from a plot. Perhaps grazing ani-
mals invade a plot of wheat, Jightning strikes a tree ,
or an experimental rat dies accidentally - all inci--//
dents that should be unconnected with the applied treat
ments. What is to be done? The method of least squares
is the appropriate way of handing the lack of balance./
If the experiment is completely randomized, there is no
problem: simply regard the treatment involved as having
one less plot and perform the standard calculations.for
randomized blocks and other designs, least squares can
be handled in three ways, all equivalent.

(i) Write z for the "missing value” of y . Perfom
an analysis of variance in terms of 2z and find /
the error sum of squares in the form

A2 + Bz + C (A>0). (7.1)
This will be minimized by
3 = -B/2A. (7.2)

Insert this numerical value of z in place of the //
missing y , reduce the number of degrees of free-/
dom for error by 1, and the completed analysis of /
variance will give the appropriate 52 as an unbiased
estimated of o2,

For a randomized block design with b blocks /
of treatmnets, this leads to

7= PB+T -6

zt
(b-1)(t-1) (7.3)

where B is the total of all other y 1in the block/
js the totzl of all /
other y for the treatment from which one is mis/
sing, and G is the total of the (bt-1) recorded va-
lues of y. Analogous formulae can be found for o-/
ther designs.

from which one is missing, T

(i) Guess a value for z , and find the estimates /

of all parameters m, by, t;. Then determine

m + bi + tj

for the "missing plot”, take this in place of the /
previous 2z , and repeat the cycle until z re-- /
mains constant. This ensures that the residual ///
(Section 13) for the missing plot is zero. It will/

give exactly the same Z as in (i).

Although (i) and (ii) lead to unbiased estima-




tion of 62 , variances and standard errors of //
differences in the tj require more care. The in-/
serted value of % is, as in (7.3), a linear fung
tion of all the other y , and in consequence //
variances of treatment differences are greater //
than if the data were complete. A crude adjust--/
ment, slightly too extreme, is simply to regard /
the affected treatment as having one less repli-/
cate.
(i) Insert an arbitrary value in the missing po-//
sition. A suitable choice is the general mean of/
all y values from other plots, but the eventual
result is the same whatever is chosen. Then defi-
ne x as a "dummy variate" taking the value --//
(N-1) for the missing plot, -1 for all others, //
where N is the total number of plots. Make a co-/
variance analysis of y on x. The adjusted tj /
will have taken proper account of the missing va-
lue, and the standard covariance analysis - 1i--/
near regression procedures will attend to varian-

ces and standard errors appropriately.

Methods (i), (ii), (iii), can be generalized to deal //
with two or more missing observations. One must have //

separately defined, lose as many degrees of

z, 2
10 295 cee
2

freedom from s¢ as there are missing plots, and intro-
duce a separate dummy variate x, Xgs - for each mis-

sing plot.

Although method (i) is convenient for simple cases/
where a formula such as (7.3) is known, method (iii) /
has the advantage of generality. It applies to any de-
sign, however complex, and is easily handled by any ge-
neral computer package that includes covariance analy-/

sis.

Note the logical necessity that loss of a value //
shall be causally independent of the applied treatment/
If the yield of a fruit tree is lost because its encou-
raged early ripening of fruit and consequent destruc--/
tion by birds, or if a rat dies because its experimen-/
tal diet was deficient in some vital component, any use
of the methods of this Section must produce biased re-/
sults. If a particular diet under test introduces a se-
rious risk that rats will die before they are 6 months/
old, what meaning can be given to estimating the expec-
ted weight at 12 months for rats on this diet? In such/
circumstances, statistical method alone cannot help: /
the whole concept and purpose of the experiment must be

23

D.J. FINNEY

re-examined.
8. SOME OTHER ACCIDENTS

The method of least squares and the analysis of co-
variance are powerful aids to the salvage of other ex-/
periments that have gone wrong. For example, it has -/
been known for the produce of two plots of land to be /
mixed at harvest, so that only the total ot two values/
of y 1is known. Any of methods (i), (ii), (iii) can be
adapted to this problem.

Federer & Schlottfeldt (1954) and Qutwaite & Ruther
ford (1955) discussed plant heights recorded for seven/
treatments in eight randomized blocks. The blocks were/
side by side, and the seven plots of each block were in
a single line. Unfortunately, the planning of the --//
blocks failed to take adequate account of trends in -//
soil fertility, and the precesion of the experiment was
reduced by a consistent fertility gradient from plot /
to plot within blocks. The authors recovered informa--/
tion by covariance on a dummy variate. The main step //
was to define X] as a variate increasing linearly from/
plot to plot within each block, say Xy = 0,1, 2, ..../

.. 6, and to use this as a covariate. By extending //
the analysis to include a carefully chosen set of 6 -//
dummy variates, all trend (linear or other) from plot /
to plot along the blocks can be eliminated. The experi-
ment would have been more precise had blocking been ba-
sed on the actual trend (or had a two-way Latin square/
design been used), but if the trend was not known in ad
vance the covariance technique provides an effective -/
salvage operation.

Some years ago 1 was asked for help with an experi-
ment on varieties of cereal, consisting of 36 long na-/
rrow plots side (Finney, 1962). A1l plot corners were /
marked by pegs in the ground. The peg at one. corner of/
the whole experiment was accidentally removed. Before /
the accident was discoverd, the crop was harvested as /
35 parallelograms (nearly rectangular)!. Each harvested
plot contained triangular halves of two adjacent true /
plots. This enabled each observed yield to be expressed
in terms of a block parameter and a sum of two treat--/
ment parameters. Estimation by least squares was surpri-
singly simple (I had no computer then!). Not surprisin-/
gly, the loss of information relative to the full expe-/
riment was great, variances being about twice what they/
ought to have been, but the important fact is that some-
thing useful was saved from an experiment that otherwise
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would have been discarded.

TABLE 2.1
Responses to Four QOestrone Preparations

(Uterine weights of rats, mg per g body weight)

Litter T1 T2 T3 T4 Totals

1 0,54 1,52 0,61 0,92 3,59

I1 0,49 0,71 0,74 0,63 2,57

111 0,51 1,12 0,51 1,07 3,21

1v 0,40 0,58 0,60 1,02 2,60

v 0,81 1,02 1,07 1,20 4,10

Vi 0,63 0,86 0,83 1,05 3,37

V1l 1,26 1,58 0,83 1,08 4,75
Totals 4,64 7,39 5,19 6,97 24,19

(The results of this experiment have been modified slightly to make them more suitable as an illustrative example.)

TABLE 2.2
Analysis of Variance for Table 2.1

Adjustment for mean 20.8984
Variation df Sum of squares Mean sauare
Litters (blocks) 6 0.9232
Treatments 3 0.7671 0.2557
Error 18 0.8854 0.04919
27 2.5757
TABLE 2.3

Summary of Means for Table 2.1

Treatment T Ty T3 in

Mean 0.663 1.056 0.741 0.996 + 0.084
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III. ANALYSIS OF VARIANCE

1. INTRODUCTION

Presentation of the theory of the analysis of varian-
ce in terms of matrix algebra has merits both for conci-
seness of theory and for formal organization of computer
programs. Whether it gives the same insight into the /
structure of the analysis as was possessed by those who
may/
be doubted. Early papers by Fisher and by Yates are re--
markable for the facility with which they produced new /

first developed the subject of experimental design

families of designs, and then unhesitatingly wrote the
arithmetic steps for a well-organized analysis of varian
ce; these papers still deserve reading.

Scientists unskilled in the manipulation of matrices
often have difficulty in understanding the formulae /
underlying the analysis of variance. Yet the theory can
be expressed entirely in terms of fairly elementary alge
bra, within the comprehension of anyone who refuses to/
be intimidated by expressions and equations involving se
veral subscripts. This lecture outlines rather formally
a presentation that I have long found useful in teaching
Though it contains nothing new, systematic statement and
proof along these lines does not seem to be readily ac
cessible elsewhere. The approach derives from an elemen-
tary lecture given by R. A. Fisher at Rothamsted Experi-
mental Station about 1.942, but I have inserted much /
more detail. I am well aware that theory and proof can
be expressed more concisely in matrix terms, but I have

never found this so enlightening.

My concern is particularly for the non-mathematician/
who is reasonably competent in algebraic manipulation, /
but even the professional statistician may improve his
management of the analysis of variance by familiarizing/
himself whit simple properties of contrasts. I assume
that you know the numerical techniques, at least for the
simpler analyses of one-way and two-way data, though you
may be unsure why the methods work. If you find the many
suffixes and summations confusing, you should write out
the theory exactly as it is stated but with particular
small integers in place of general numbers of observa---

tions.

Nothing that follows is intended to discourage the /
proper use of sophisticated algebraic techiniques. The
aim is solely to supplement these by a more elementary /
approach that may help some people to appreciate the /
underlying logic. Note also that nothing in this Lecture
depends upon any assumption of Normality.
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2. NOTATION

1, 2, ...
observations on a variate y .

Suppose ¥; for i = , n to be n independent /
Define Uj as linear func--

tion of the Yo arbitrary except for the restriction /

that at least one of the coefficients aji differs from
zero:
Uj = ajlyl + ajzyz toiieee * ajnyn l
(2.1)
n
= I ay.
j=] Ji i

n
Until further notice, the summation iil will be writ--
ten simply as L ; all other summations will have their

limits stated.

One particularly important linear function in the sim
ple sum of the Y this will be referred to as U° , whe
re

U° = Iy, (aoi =1 for all i) . (2.2)
Clearly the mean of all observations is
y-= U/mn - (2.3)

3. A FUNDAMENTAL THEOREM

The analysis of variance depends upon the following /
general algebraic theorem:

Suppose that p Tlinear functions Ul’ UZ’ .o U
are defined as in Section 2. The equation

P
I u?

(3.1)
go1

:y:s

will be true for every possible set of numerical/
values for the Y5 if and onfy if three conditions
are satisfied:

p=n, (3.2)

2°;i =1 for each of Jj=1, 2, ..., P,
zajiaki = 0 for each pair of unequal j, k . (3.4)

(3.3)

The proof is not difficult, but is a piece of formal/
mathematics that I need nor give. The theorem is closely




related to the well-known fact that a set of p indepen
unknowns will have an uni--
que solution only if p=n . Note that (3.4) is the key

Equation (3.2) merely demands the right number of compo-

dent linear equations in n

nents. Equation (3.3) can be secured by a simple stan--
dardization, dividing all coefficients of U. by un appro
priate amount. Indeed, a possibly simpler statement of /
the theorem is that

n
AR (3.5)
=1
where Dj is defined by
= T a2 3.6)
D:] Ly, (

will be true for all possible ¥; if and only if (3.4)/
is satisfied.

Equation (3.4) is said to be the condition that Uj’ Uk/
are onthogonal.

This terminology is geometrical in origin. Relative to
U. =0 and Uk =0 are
the equations of two hyperplanes (straight lines if n=2
n=3), and {3.4) is the condition /
that the two shall intersect at right angles.

axes . in n dimensions,

ordinary planes if
If m>1 , a great deal of freedom exists in the defi

nition of the U, . One of them, Un
ned quite arbitrarily. Equation (3.4) whith n-1, n for

say, can be defi--

j» k then gives one linear constraint on the coeffi---
cients of Un-l : all but one of the an-l,i can be
chosen arbitrarily and the final one is determined. /
Equation (3.4), first whit
whith n-2, n-1 for

on the coefficients of U

n-2, n for j, k and again
Jj» k, gives two linear constraints/
ne2 (n-2) of the 2.1 /
can be chosen arbitrarily and the final two are determi--

ned. So one proceeds until permitted only one arbitrary/

choice of a coefficient in U1 ; this last merely /
amounts to the choice of a multiplicative factor for all
a,. » which leaves y2/ra? unaltered.

1i Ul/ ajl
4. CONTRASTS

in /
equation (2.2) as one of the functions; I shall now use
Then, with the aid of another well-

For statistical purposes, we always choose Uo

Uo in place of Un .
known result.
v2
I .--zl 2-—0
(y;=¥)® = Iy§ - =
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n-1 2

subject to the appropriate conditions. The orthogonality
of each other Uj whit U0 requires that.

Iaﬁ =0 for each of 31, 2, ..., (n-1) . (4.2)

Any linear function satisfying (4.2), having the sum of
its coefficients zero, is said to be a contrast of  the
y; - Hereafter the Uj notation (except Uo) will be /

restricted to contrasts; Dj may be termed the contrast

divison and
Q. =u/op, (4.3)
J J J
the contrasit square.
The statistical form of the theorem can now be /
stated:
Let Uj for j=1,2, ..., (n-1) be contrast among
the y_i and let Q. be the corresponding contrast/

square. Then the equation
2 n-1
Blyg=9)® = I Qy
=1

will be true for every possible set of numerical va-
lues for the ¥; if and only if every pair of con-
trast has coefficients satisfying the orthogonality
condition (3.4)

The art of the analysis of variance consists 1in /
choosing contrasts that are best suited to the objecti-/
ves of a particular investigation. Note that each Uj and

Qj corresponds with 1 degree of frecedom.
5. SOME EXAMPLES

By an argument similar to that at the end of Section
tess/
be /
set of

3, if any number of mutually orthogonal contrasts
than (n-1)
found, and the process can be repeated until a

is specified, an addtitional one can

{n-1) 1is obtained. For suppose orthogonal contrasts Ul’
U2, ..
function Uj+1 shall be a contrast and shall be orthogo-
nal with Ul’ UZ’ .
to be satisfied by the a

.. U, are specified. The conditions that a linear

. Uj give (j+1) linear equations

41,0 If j<n-1 . these will
have a solution with some of the coefficients non-zero.




An example makes the process clear. Suppose n = 4 .
Take the arbitrary contrast

U, = 4y, - 3y2 + 2y3 - 3y4 (5.1)
Then U2 must have
3y * A Ayt Ay =0
4a,. - 3a,, + 2a,, - 3a,, =0

21 22 23 24

Among the unlimited number of solutions, one possibility
is

U, = 15y1 + Syz - 21y3 * Y, (5.2)

any linear function with coefficients in the ratios 15 :
5:21:
required to satisfy the condition that it is a contrast:

1 is essentially the same contrast. Next U3 is

agp tagy taggtag =0
and that it is orthogonal with LIl and U2 :

4a31 - 3a32 + 2a33 - 3334 =0

15a31 + Sa32 - 21a33 + Az = 0
The only solution, except for a factor running right /
through, is

U3 = Sy1 - 56y2 - 7y3 + 58y4 (5.3)

Thus U1 is arbitrary, UZ has been chosen with an
arbitrary element, and U3 is determinate; of course no

U4 can be found orthogonal to these three. Exactly the/

same process can be used for any n . Algebraic verifi-
cation, or trial of arbitrary numerical values for the/

Yoo should convince the reader that

2 2 3
u,% ., %

My -9 =95 * 557 * g5 (5.4)

with Ul' U2, U3 as defined by (5.1)-(5.3).
One general set of orthogonal contrasts, often /

useful as an example, is

Ui "% )
U, = ¥t Y, s ;
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yl +.y2 +o. "'YJ = J.YJ+1

u =¥ + y2 + ..

n-1 * gy - (n-D)y

Every pair of these is easily seen to satisfy (3.4); /
they have

D, =

; i (3+1) .

(5.6)
6. A SECOND THEOREM

Recall expressions such as II(2.1) for individual ob-

servations. They can be expressed here as
Yy oty (6.1)

is the parametric expression corresponding to

y., and €

1
is

where ni

is the "error". Then the expectation of ¥;

E(yi) = (6.2)
and we usually take

E(e?) = o? (6.3)
as in I1{(2.2). Evidently

E(Uy) = zagn; . (6.4)

Moreover, we can write

UJ = I‘ji“i + :aji‘i .

If we square this and take expectations, remembering that
the n; are constants and the different €, are indepen
dent of one another, we obtain

E(Ug) = (taﬁni)z + aztagi
- [E()]? + o’y .

This result can be written

Eu))?
E(q,) - .[_UJ._+ o .

J

(6.5)

Thus if Uj is a contrast whit zero expectation, Qj /




2 is increased

has expectation g2 ; otherwise, that ¢
by a component proportional to the square of E(U.). /
This is the basis of estimation of o? from suitable /
mean squares in the analysis of variance, as well as /

for “variance ratio" tests of significance.
7. COMPLETELY RANDOMIZED DESING

As in Section Il 1, suppose the n observations to

be " from treatment Th for h=1, 2, ..., t . Write
Yh for the sum of the h values of y for treatment
Th . Now define

Uy =y "%

Up = rg (YpPY5) = (rpr ) ¥y (7.1)
Ug = ry ()¥YpHYg) - (rpprpirad Y,

]
etc., up to U,

These expressions must be regarded as abbreviations for

If each Yh

in full as a sum of observations, each Ul’ U

is written /

2’---, /
conforms

Tinear functions of the ¥ -

Ut-l is seen to be a contrast and every pair
to equation (3.4). These (t-1) contrasts may be termed
contrasls between treatments, since they can be calcula
ted from treatment totals (although for their proper---
ties as contrats one must always think of them as writ-

ten in full in the Y5 ).

Now consider treatment T1 alone. The total of its

r. replicates is Yl , and the theorem of Section 4

1
shows that we can find (rl—l) mutually orthogonal con

values of y {the a coeffi----

will be zero ). Any

trasts among the 5]

cients for all y not in T such

1
contrast is obviously orthogonal to Ul’ U2’ N Ut-l'
Moreover the sum of the Q's for these (rl-l) con-=~-=
trasts is"E(y-y)?"within treatment Tl’

similarly for each treatment in turn, noting that any

We can argue
contrast "within Tl" is orthogonal whit any " within
Tz" etc. Thus we identify a total of (n-t) contrasts
within treatments whose contrast squares sum to

2 2 2
> 1 72 i (7.2)

If we also include the (t-1) contrasts between treat--

ments, we have a full set of (n-1) mutually orthogonal
contrasts, and together the contrasts contrast squares
must form :(y-})z for the .n observations. It imme-

diately follows that

¥ o P o(zy)?
01"’02" ---+Qt_1"".T+?z" '"4":' n (7.3)
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I (4.3) is constructed. /
Moreover, all the within treatment contrasts have expec-
(n-t) /
-» Uy has an

Hence we see how Table

tation zero, so that the mean square for these
df estimates o2 . Each of Ul’ U2, ..
expectation involving treatment parameters, as in /
equation (6.5). Therefore the expectation of the mean /
(t-1) df for treatments exceeds

(t-1)
The two mean squares have equal expecta--
E(Uj)
valent to the condition that all treatment parameters /

square from the
by an average value of the
[Ew)Pn, .
tions if and only if all

expressions /

are zero, which is equi

are equal. Hence it is appropiate to use the ratio of

the mean squares as the basis for a test of significance

2

and also to use the estimate of ¢ from the error /

line as a basis for attaching a standard error to any /
contrast between treatment means.

8. RANDOMIZED BLOCKS

In a randomized block desing, contrasts between treat

ments can be isolated in exactly the same manner. But
the t treatments and the b blocks enter symmetrically
and so (b-1) orthogonal contrasts between blocks can /

also be isolated. One then easily sees that any block /
contrast is orthogonal with every treatment contrast. /
There must remain
(n-1) - (t-1) - (b-1) = (t-1) (b-1)

contrasts orthogonal both with treatments and with /
blocks; these must have zero expectation whatever the /
treatment and block parameters may be, and therefore the
mean square with (t-1){b-1) df estimates

As a simple illustration, easily extended to the expe
riment discussed in Section Il 2, suppose we have 3 /
treatments in 4 blocks. Then the set of coefficients

T T
I -2 3 -1
1 -2 3 -1
mr -2 3 -1
W -2 3 -1

defines a treatment contrast: it is a contrast because /
the 12 coefficients add to zero and it is a treatment /
contrast because the 4 replicates of a treatment have
the same numerical coefficient. Similarly

T 0

I -1 -1 -1
11 4 4 4




I -2 -2 -2
v -1 -1 -1

is a block contrast. Verify that these two are orthogo--
nal, if you do not find it obvius. Now considerer

I 2 3 -5
I1r -4 -6 10
111 6 9 -15
Iv -4 -6 10

This is a contrast, and is easily verified to be orthogo
nal with each of the other two.

I shall not complete the argument in detail, but what
has been said rapidly leads to Table Il 2.2 and all that
follows from it. A further result, requiring a little mo
re algebra than I have shown but being an extension of /

(6.5), is that the expectation of the treatment mean
square is
t
2 b -
o° + t (1.-7) (8.1)
T pap P

9. GENERALIZATIONS (FOR FUTURE REFERENCE)

The two-way analysis of variance is the basis of the/
statistical analysis of most planned experiments. As
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described here, it relates to a
If each block has
instead of only one, an estimator of o

randomized block design.
p observations from each treatment /
2 alone can be /
found from a sum of squares within classes: the analysis
discussed in Section 8 is then based on totals for
of the
gives expectations as above, and the intra-class mean /

square with bt(p-1)

each
bt classes, division of all sums of squares by p

degrees of freedom obviously has
expectation qz

Generalizations to more complex designs follow the same
(b=t)
squares exactly like those for rows and columns extracta-

pattern. A Latin square has another sum of /

ble from what was previously "error”. A factorial design
allows the treatment sum of squares to be subdivided into
components that can be separately interpreted, and each
has an expectation involving the relevant parameters. /
Incomplete block designs are more troublesome, as the
expectation of a crude sum of squares for treatments in--
volves block parameters and vice versa. However, the ana-
lysis described in Section V 4 forms a sum of squares for
treatments adjusted for blocks (or an intrablock compo---
nent of the treatment sum of squares) for which the expec
ted mean squares is again g2 plus a function of the /
treatment parameters only. Designs for sample surveys may
involve hierarchical analysis of variance, possibly with/
the pattern of Section 7 repeated at each successive pair
of levels of the hierarchy and preferably (for simplicity
al least) with all ™ equal.
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IV. LATIN SQUARES AND HIGHER ORTHOGONALITIES

1. WHICH BLOCKS?

In some situations where a randomized block design
is comtemplated the experimenter may recognize two ( or
more) different blocking systems as candidates for use.
The classical instance is that of experimentation on /
agricultural crops. Evidence on the fertility varia- /
tions within a site may suggest that blocks should be
separated by lines running east-west: fertility is /
thought to decline steadily from north to south,so that
such blocks will minimize intra-block variation. On the
other hand, the pattern of new irrigation facilities ,/
or even the convenience of field operations,may suggest
Latin
square design will permit the two systems to be used si

that block boundaries should run north-south. A

multaneously; it does require that the number of treat-
ments is the same as the number of each kind of block.
For example, if A, B, C, D, E are 5 varieties of wheat
that are to be compared, the field arrangement might/
be:

m » m o O
P o O Mm >
> O O mMm
O m > © O
o OO m >» @

Note that both the rows and the columns of this arrange
ment satisfy the block condition, in that each row and
each column contains one "plot" of each treatment. The
name "square" refers to the formation of the letters, /
and in no way indicates that the actual plots of wheat
must be square!

The use of Latin squares is not restricted to agri-
cultural research. Exactly similar positional considera
tions may arise in taking sample pieces of skin from a
hide for comparison of tanning treatments, pieces of/
cloth from a large strip for comparison of dyes, or pie
ces of metal from a sheet for comparisons of the quali-
ties of applied paints. But rows and columns need not
represent positions in this way. A comparison of me- /
thods of inoculating leaves with a virus might have /
plants as columns, order of leaf from the base as rows.
A comparison of cell- counting ability among 5 techni-
cians might use 5 microscopes and 5 slides as rows and
columns.

Latin squares of any size can be constructed. If /
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one of the smaller squares (especially 2x2 and 3x3) does
not give enough replication for an experiment, a set of
2, 3, or more squares can be used to form a larger expe-
riment. Squares larger than 10x10 are seldom wanted for
practical use, as their merits for controlling variabili
ty may then be less, but particular cases can be conside
red on their merits.

2. ANALYSIS OF A LATIN SQUARE

A Latin square for t treatments has t2 observa-
tions. The balance of the design makes clear that the /
sets of (t-1) contrasts for rows, columns, and treat- /
ments are mutually orthogonal. Hence the analysis

the form:

takes

df
Rows t-1
Columns t-1
Treatments t-1
Error (t-1)(t-2)
Total t2-1

in which the sum of squares for each of the first three/
lines is calculated exactly as was that for blocks or /
treatments in Section II 2, using the appropriate set of
t totals. The error sum of squares is again obtained by
subtraction. No new features enter. Standard errors /

follow in the usual way.
3. MATHEMATICAL FORMULATION

I think we should look at the kind of formulation of
the observations that appears as equation II (2.1) a /
little more carefully. That equation generalizes here to

+ €.

Yigk T BTt Tt ik (3.1)

for the observation in row i , colummn j , if this - /

happens to relate to treatment k. However, there is an

indeterminacy in the parameters: without altering re- /

sults, one could add a fixed amount to u and subtract

that same amount from all the Bi

. It is usual to overcome this by

or from all the Tj
or from all the T
introducing the constraints

Sum of all 8, =0, ]




(3.2)

Sum of all =t

Sum of all Yj =0, %
'0, j

k

(and of course similarly for randomized blocks). Thus in
particular the T, are deviations from the general /
mean, and have unique values. This becomes important for
the handling of more complicated designs. The expected /

mean square shown as II1 (8.1) becomes

t

2 b 2
0"t I 1 (3.3)
=Ty
and for a Latin square this is further modified to
t
2 t 2
o‘ + f
- 3.4
T ., (3.4)

4. A WARNING

Note that the vilidity of a Latin square experiment
rests on equation (3.1), that is to say on the additivi-
ty of the various effects. If the deviations from the ge
neral mean associated with columns are not the same from
will need to be re-

row to row, the t quantities Yj

placed by t2 . Treatment effects may /

and/

quantities Yi
than be masked by these "row-column interactions”
the experimenter is untrustworthy.

This is unlikely to be a serious worry when the /
overall variability is small, but it may be if that va-
riability is very large.

5. SOME PROPERTIES

One may easily verify that there are only 2 distinct
2x2 Latin squares and only 12 distinct 3x3 squares. Lar-
ger squares are far more numerous, 576 for 4x4 and more
than lel)13 for 7x7. Beyond that, no counts available.
A Latin square for use ought to be chosen at random
from all squares of the desired size. In their Statisti-
cal Tables, Fisher & Yates (1964) describe how this can

be done for the smaller squares.

For larger squares, it is adequate to take a speci-/
men square, rearrange the rows in a random order (e. g./
put rows 1, 2, 3, 4, 5 in the order 2, 4, 1, 3, 5), -/
rearrange the columns in a random order, and assign /
treatments to the letters of the square in a random or-
der.
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6. MODIFIED USES

The requirement that the number of rows, columns,and
treatments shall be equal may seem severe. However, some
variation is possible by including one treatment twice
(or even 3 times) as though it were two different treat-
ments. The only change in the analysis is that one or /
more contrasts that apparently are between treatments /
now have expectation zero, and the appropriate square /
should be transferred to the error sum of squares. Some-
times this fits well with considerations of optimality /
such as were mentioned in Section II 1.

It is also permissible to plan a Latin square and/
then deliberately to omit the final row (or the final co
Jumn). This destroys orthogonality, but still leaves po-
ssible a least squares analysis such as that for incom--
plete block designs (Lecture V).

7. GRAECO-LATIN SQUARES

Consider an addition to the square in Section 1:

C8 A8 Ee Da By
Dy E8 Ca B& Ae
Be Cy D§ As Ea
Ac De Bs Ey C&

E§ Ba Ay Cec D8

Each Roman letter now has a Greek letter alongside it .
Note that:
(i) The Greek letters themselves nave the latin ///
square property, each occurs once in each row //
and once in each column.

(ii) Every one of the 25 possible Roman-Greek pairs /
occurs once.

This is a Graeco-Latin square. The Greek letters give a
new classification of the observations, the contrasts /
for which are orthogonal to rows, columns, and Roman let
ters. Consequently, formally, the data can be analyzed /
by a further extension of the analysis of variance:

df
Rows t-1
Columns t-1
Roman t-1
Greek t-1
Error (t-1)(t-3)
Total tz-l




One could envisage an experiment in which one set of
treatments (e.g. types of virus inoculation) is associa-
ted with Roman letters and a second set (e.g. concentra-
tion of inoculum) is associated with Greek letters. This
is usually unwise, unless there is very good reason to/
believe that the effects of the two sets are truly addi-
tive. The design may occasionally be useful when a Latin
square experiment has been conducted and subsequently /
the experimenter wishes to use the same material ( plots
of land, single trees, animals) for comparing a new set
of t treatments; if he believes that effects induced /
by the first treatments are very likely to have disap--
peared, he may use a Greek pattern for the new treat- /
ments, confident that any departures from simple additi-
vity will be small.

Graeco-Latin squares have further importance as aids
to the construction of other designs (Lecture V).

added
quite /
small. Note the following pair of 4x4 Latin squares:

Not every Latin square can have Greek letters
orthogonally. Indeed the proportion that can is

Aac B8 Cy D& and
By AS Da C8
Cs§ Dy A8 Ba
D8 Ca BS Ay

0O O o >
O O > o™
> m O O
m » O O

with
a Graeco solution and the second cannot be extended in/

They differ only slightly, yet the first is shown
this way. In fact only 1/4 of all 4x4 squares can have
Greek letters added, and only 3/28 of all 5x5 squares. /
The 6x6 squares are remarkable in that no Graeco-Latin /
arrangements exist. For every number greater than 6,Grae
co-Latins exist (a truth that was in doubt until 25 /
years ago), but they are relatively very scarce.

Still more complicated orthogonal structures exist.
Consider the first of the two 4x4 squares still
extended:

further

Aal BB2 Cy3 Ds&4
Byd Aé3 Da2 (sl
€62 Dyl As4 Ba3
D3 Cad Bl AY2

The numerals 1, 2, 3, 4 give a further classification /
that is orthogonal with rows, columns, Romans, and /
Greeks. No more is possible for a 4x4 square. It is easi
1y proved that, for a txt square, the number of distinct
mutually orthogonal sets of symbols cannot exceed (t-1).
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It is also provable that this maximum can be achieved if
t is a prime number or a power of a single prime (3,4,/
5,7, 8,9, 11, 13, 16, 17,
beyond this. Can 14 sets of symbols be put orthogonally/

..... },but not much is known

into a 15x15 square? I do not know, and I do not think/
that anyone else knows!

8. ORTHOGONAL PARTITIONS OF LATIN SQUARES

A txt Graeco-Latin square may be regarded as a /
(lt) partitioning of each row in such a way as to be si-
mul taneously a (lt) partition of columns and a (lt) par-
tition of the Roman letters. Occasionally less extreme /
partitions are useful. For example, if the treatments in
a 5x5 square are thought to have ceased to affect the ex
perimental units, a scientist might wish to superpose a
new set of 4 treatments in a balanced manner, so that /
one new treatment has double replication in each row, in
each column, and with each original treatment. This is/
easily done by making two of the Greek letters identical
in the square at the beginning of Section 7: for example
if each €

is replaced by § ,wehwea(l%)on

thogonal partition.

Many such partitions exist for Latin squares that do
not have complete (lt) Graeco partitions. The second 4x4
square shown in Section 7 has a (22) partition:

A Ba C8 D8
B8 A8 Da Ca
Ca Da B8 A8
D8 C8 Aa Ba

More useful are the many orthogonal partitions of 6x6 /
squares, especially because Graeco-lLatin 6x6 arrange- /
ments do not exist. For example, there are 23 partitions
such as

By D8 Ay Fa (8 Ee
Da Ba EB Cy Fy A8
A8 Fy B8 DOa Ea Cy
FB Ey Ca BB Aa Dy
Ca Aa Dy EB By Fg
Ey CB Fa Ay DB Ba

that could enable 3 new treatments to be put in a balan-
ced arrangement on an existing 6x6 Latin square. All ty-
pes or partition except (16), such as (32), (1, 2, 3), /
can be found for 6x6 squares. I have recently (1982b) pu
blished a very full account of these and of higher order
orthogonalities for the system.
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V. [INCOMPLETE BLOCKS

1. THE NEED

In many circumstances in which an experimenter //
would like to use randomized blocks, the number of //
treatments exceeds the available or desirable block //
size - sometimes very substantially. I mention three /
contrasting examples:

(i) Field trials of new varieties of a major crop //
may need to include 20-50 varieties, yet expe-//
rience suggests that the efficiency of blocks //
for the control of variability in agricultural /
experiments is much reduced for plots of more //
than 10 plots;

(ii) The block is to be litter-mate animals of one '/
sex, and the number of treatments exceeds the //
number that can reasonably be expected to occur/
frequently (possibly 6 for rats or 3 for sheep);

(iii) Maximum block size is dictated by administrative/
convenience, such as the number of clases of so-
me phenomenon ( a disease, a type of accident, a
meteorological state) occurring in one month, /
and the number of treatments exceeds this.

Randomized complete blocks will always be first //
choice unless there are strong reasons favouring «-///
smaller blocks: they are easy to interpret, efficient,
and computationally simple. However, necessity may -//
force the use of smaller blocks, or the gain in effi-
ciency from reduced block size may be thought likely /
to be greater than the loss consequent upon incomplete
replication within blocks.

2. THE ANSWER
Let us recall equation II (2.1):
yij="+8i *‘j+‘ij (2.1)

for the observation y on treatment j in block i ;/

as in equation IV(3.2), we now adopt the constaints

(2.2)
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where b , t are the numbers of blocks and treatments.
Suppose we have 5 treatments A,B,C,D,E and blocks of //
size 4,4,3,2. Then if we chose the block contents (be-/
fore randomization of order) as

1: A B C E
Ir: 8 ¢ E
I : A ¢
vi: A D
we could estimate the parameters by least squares, de-/
termining values to minimize the sum of

2
(yij-u'si - tj)

over all 13 observations. This may look a difficult //
task, but with modern computing facilities it can be //
done quite rapidly even for much larger experiments. //
There are two objections. First, the implicit assump-//
tion of constant variance, equation 1(2.2), may be ///
inappropriate. One might expect 62 to depend upon block
size, and indeed the reduction in 62 as block size is /
reduced has already been stated as a major reason for /
using small blocks. This consideration is likely to be/
more important for plots of land than for litters of /
rats, and it may matter little for blocks that are neayr
1y the same size (say 6 and 5, but perhaps not 4 and 2).
Secondly, the arrangement shown is totally without sy-/
mmetry; in consequence, variances for treatment means /
will depend upon which comparisons are being made (the/
difference between C and £ will be much more precisely/
estimated than that between B and D).

Much better designs can be achieved if all blocks /
are of the same size. Look for example at arrangements/
for 3 treatments in 6 blocks of 2 and 5 treatments 1in/
5 blocks of 4:

I A B 1 B €C D E
11 A B IIr A C D E
I A C II1 A B D E
Iv AC IV A B C E

v B C v A B C D
vi B C

If we restrict ourselves to intra-block comparisons, /
that is to say to contrasts orthogonal with blocks, it
is evident that {in the first design), (11-12) can/
be estimated from blocks I and II. But further infor-/
mation is available: (11-13) can be estimated from/
blocks 111, IV, (15=%3) ~ from blocks V, VI, and the/
difference between these again estimates (tl-tz).




The symmetry of this design (and of the other example)/
ensures that all variances are equal and leads to a //
tractable symmetric form of analysis.

3. BALANCED INCOMPLETE BLOCKS

The two examples in Section 2 are very simple e-//
xamples of this imoortant class of designs. The defi-/
nition of a balanced incomplete block design is that /
there shall be t treatments in b blocks each of k
“plots" (the word generally used to mean animal or hu-
man subjects, field plots of a crop, or any other ex-/
perimental units) such that

(i) Each treatment occurs on r plots,
(ii) Each pair of treatments occurs in A  of/
the b blocks.

Of course, t, b, k, A must be integers, as must

r = bk/t, (3.1)

the number of replicates of each treatment, alternati-
vely expressed as

N = bk = rt (3.2)

the total number of plots. Since a block contains ///
k(k-1)/2 pairs of treatments and in all there are ///
t(t-1)/2 different treatment pairs, it follows that

bk{k-1
X‘—t-t'{:ﬁ’

which with the aid of (3.2) simplifies to

so that the expresion on the right must be an integer.

(3.3)

The two simple examples in Section 2 had
k=2, be6, t=3, r=4, Ax2
and
k=4, b=5, t=5, r=4 6 123

respectively. A less trivial illustration is

I ACEG
11 BCFG
111 ABEF
Iv DEFG
v ACDF
VI BCDE
VII. - ABDG .

which has k=4, b=7, t=7, r=4, Xs2 . A design with //
k=4, b=20, t=16, r=5, A=1 can be constructed from the
completely orthogonalized 4x4 square at the end of Sec-
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tion IV 7. Write the 16 treatments in random order on /
top of the square. Take the rows as defining 4 blocks,/
the columns as defining 4 more, and similarly 4 blocks/
from Latin letters, Greek letters, and numerals.

For any t, k, one can always form a balanced incom-
plete block design by taking all possible selections of
k from t , but often this gives an intolerably large/
numbers of blocks. Unfortunately, although the condi-/
tions that r, A in (3.1), (3.3) are necessary for the /
existence of a BIB design, they are not sufficient. /
For example, k=5, b=21, t=15, r=7, =2 satisfy the con
ditions but no design corresponding to these exists. //
t and
existence of designs is difficult. Extensive catalogues

Except when r are small, investigation of the
are available; there are also various rules for cons--/
tructing particular subsets of designs. Among the ra--/
ther few general theorems known are:
(i) For any design, rak
hence
k=6, b=8, t=16, r=3 A=l
(ii) If t=b (and therefore r=k) and t
even integer, (r-i)

{and therefore b>t);

is impossible;
is an /
must be a perfect /
square; hence
t=b=22, r=k=7, A=2 is impossible.

Simple and elegant mathematical proofs of these //
theorems have been obtained, and I have reproduced them/
elsewhere (Finney, 1960, Chapter 6); I do not propose to
include proofs in my lectures, but shall gladly provide/
them if asked.

4. STATISTICAL ANALYSIS

I shall not describe every detail of the statistical
analysis of BIB designs, as this is better studied in /
text books. However some account of a particular example
with a few more general formulae, should help you to //
read books easily; it is also instructive in relation to
other types of design.

Table 4.1 shows subjective assessments of pain re-//
corder by 30 subjects, each of whom received 3 doses of/
penicillin by injection at 3 sites. Pain was scored on a
scale from 0 (none) to 4 (severe), separately at each //
site. The allocation of doses to subjects was in accor-/
dance with a BIB design for which

k=3, b=30, t=6, r=15, aA=6.
The very small values of y may cast sertous doubts on/
any assumptions of Normality, but the simple arithmetic/
is helpful in an illustrative example.




As usual, we assert

Yyt éi vyt €5g - (4.1)

Table 4.2 contains various preliminary calcula--//
tions. The T, are the treatment totals, transcribed //
from Table 4.1. The Bj are the totals of all blocks //
(subjects) that had treatment j ; for example, B is/
the total for subjects I-V, X-XV, XX-XXV, each of ///
which had treatment E. Look now at the quantities Qj /
defined in general by

kQ: = kT: - B

J =8 (4.2)

(Do not confuse the use of Q here with that in Lecture
I11).
Jues of (4.1) contribute to the Tj» By, and consequen-

By careful examination of how the different va-/

J
tly Qj, and remembering that

t
L, =0
13 7 (4.3)
we can show that, for example,
kQ,-kQ, = [k + (k-l)(r-x)](tl-tz)
*+ ke from each of 2X plots
+ (k-1)e from each of 2(r-1) plots
+ ¢ from each of 2(k-1){r-1) plots (4.4)

This follows because (2r-i)
that contribute to (kQ) - kQ,) , of which blocks (r-a)
contain treatment 1 but not 2, {r-i} contain 2 but not

1, and X contain both treatments. The symbol € re-//

; careful counting //

blocks contain plots ///

represents any one of the eij
shows that 2X of the e,y occur with multiplier k/
or -k from the plots of the two treatments in the -//
blocks where both occur, and so on. With the aid of -//
(3.3), equation (4.4) leads to the expectation or mean/
value

E(kql - sz) = tx(fl‘Tz) . (4.5)

Treatments enter the design symmetrically, and the/
fact that differences between Qj are independent of the
B, shows that contrasts among the Qj are orthogonal /
with block contrasts. Moreover, from (4.4}, the varian-
ce of (le - sz) is

V(KQ ~kQ,) = o?[23k7 + 2Ar-2)(k-1)% ¢ 2(r-2)(k-1)]

= 2xkto®
° (4.6):

by further use of (3.1), (3.3). Because (le - k02)2/2/

would be the square for one contrast in the sum of squa-
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t
res of deviations T [(kQ )z .
1-1[ 5%

it follows that, in units of a single plot (note that /

LR

is a sum of squares with {t-1) df for insertion in the /

(4.7)

analysis of variance after inclusion of a simple sum of

squares for blocks. Table 4.3 shows this analysis.

From (4.5), Tj
can be added to the general mean of y

is estimated by kQJ/tl , and this/
(2.11 in the e-/
xample), to give means appropriate to each treatment. //
From (4.6), for comparisons among treatment mean-we can/
attribute a variance.

ko?

>
to each mean. Using s2 = 0.4741 from Table (4.3) as an /
estimate of &2, one obtains the SE 0.20, shown with the
means in Table 4.4. Obviously there are very marked dif-
ferences between E,F and the other 4 treatments.

(4.8)

This is not the end of the story. If subjects have /
been allocated by random choice to the various sets of /
three doses, there is additional information on the tj
from block totals. For example,

81-82 = (r-x)(tl-rz) *+ kg from each of 2(r-1) blocks
t ¢ from each of 2k(r-1) plots.

(4.9)
But the randomization over blocks ensures that the 8.

are random errors applicable to blocks, so that we can /
write

E(8) = 0, E(8%) = of . (4.10)
From (4.9)
E(8,-B,) = (r=A)(r-1,) (4.11)
and
V(8,-8,) = 2% (r-2)od + 2k(r-2)o? . (4.12)

These equations are analogous to {4.5), (4.6), and they/

indicate that Tj can be estimated by

(8;-B)/(r-1) (4.13)

with variance
k(kaé + 02)/(r-1)

(4.14)

Moreover, consideration of other inter-block contrasts//
leads to estimation of (kdg + 62); the procedure is //
not obvious, but is presented in detail in my 1960 book//

and elsewhere, and on request I will explain it. In the




penicillin
estimated treatment means with SE 0.74. This SE is so /
much greater than the 0.20 in Table 4.4 that, in the //
present instance, the inter-block analysis is

experiment, the outcome is another set of /

scarcely
worth having, but a weight combination of the two inde-
pendent sets of estimates leads to a final set of means
with SE 0.19.

You may Tike to consider the consequences of using/
a modified design. Suppose the three sites on each sub-
Jject were identified as Py, p,, P3, and suppose that //
the experimenter suspected that these might differ in /
sensitivity to pain. [ would have been inclined to re-/
commend using each set of three subjects with the same/
block type (e.g. subjects IV, XIV, XXIV) in a Latin -/
square scheme such as:

P P2 P3

Iv B D E
XLV E ] D
XXIV D E B

How would I have neede to modify the statistical ana-/
lysis?

5. UTHER INCOMPLETE BLOCK DESIGNS

Balanced incomplete blocks are perhaps the simplest
of incomplete block designs, and where they are suita-/
ble they are ideal. Unfortunately many experimental si-
no BIB design -//
exits. Fortunately, there are many other useful fami-//

tuations impose conditions for which

Ties of designs with lesser symmetry than the BIB but /
more than that in Section 2. Partially balanced designs
which include the important class of lattice designs, /
are possibly the most widely known and used. Some fami-
Ties, such as doubly balanced incomplete blocks, have /
been developed to suit special experimental needs, some
perhaps more because of a purely mathematical interest/
in their combinatoric properties. All require statisti-
cal analysis along similar lines, though the complexity
increases when the symmetry is less. In particular, ///
equation (4.2) is a standard device for producing esti-
mators of treatment effects orthogonal with blocks. The
management of the intra-block and inter-block analyses/
and combination of their estimates can involve very //
complicated algebra, but once this is embodied in a //
computer program the work can be executed easily and //
quickly. In 1984, there is no excuse for choosing a de-
sign merely because it is algebraically simple or com-/
putationally familiar: emphasis should always be placed

on finding a design best suited to the questions ---//
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needing to be answered, and doing this efficiently --//
within the constraints of available resources.

One development particularly important to the ---/
testing of varieties of agricultural crops has been that
of the a-designs (Patterson et af., 1978). These were
first produced to meet the needs of the British system /
of coordinated variety trials (Patterson & Silvey, 1980;
Patterson & Hunter, 1983). Rigidly imposed conditions /
are that:

(i) The experiments shall have 2, 3 or 4 replicates;
(ii) The designs shall be resofvable (this means that
the blocks can be grouped into complete replica-
tes, a property not possessed by any of the ear-/
lier examples, although it is possible for some /
BIB designs);
(iii) The designs shall have small blocks {preferable /
not exceeding k=10), but shall accomodate large /
numbers of varieties (t=50 would not be unusual).

Resolvability has two merits, one statistical and one /
very practical. If the experiment can be laid out as //
complete replicates, each replicate or full block being
divided into the incomple e blocks of the design, the /
option of analyzing as randomized blocks is created; ./
this can be helpful as a quick preliminary analysis, /
and it ensures that even in the most unexpectedly un-/
favourable circumstances there can be no £oss of preci-
sion relative to randomized blocks. Secondly, a compact
single replicate is often valuable for visual inspec- /

tion, demonstration to farmers, and so on.

An example of such a design is shown in Table 5.1. /
The designs are defined by a method of generation rather
than by conditions such as those stated in Section 3 to
characterize BIB designs. The family of designs is very
large, and it includes many lattice and cyclic designs.
However, methods are known that enable a trial design /
to be progressively modified until one of high efficien
cy is inversely related to the variance of comparisons/
between treatments from an intra-block analysis as com-
pared with the variance for randomized blocks if there /
were no additional variance among incomplete blocks. It
measures the price that would be paid by using the in-//
complete blocks when they fail to remove any additional/
variance; in practice, one hopes to use an incomplete //
block design only when this loss of efficiency is more /
than compensated by reduction in the effective error /
mean square. If a BIB designexists for specified k, b,/
t, r, it will have maximal efficiency. However, the //

best of the a-designs have efficiencies very little/




lees than would corresponding BIB designs if they are /

also resolvable.

In the practice of variety trials, one relaxation //
of conditions is sometimes acceptable in order to in--//
crease efficiency. This is to permit experiments with //
some blocks of k plots and some of (k-1). There is ///

TABLE 4.1

D. J. FINNEY

though to be Tittle fear that the variance within blocks
will depend appreciably upon whether the block size is,/
6 or 7, and this extra freedom may allow efficiency to /
approach closer to the maximun. Again extensive catalo-/
gues of designs exist.

Results from a Balanced Incomplete Block Experiment on Pain from Intramuscular Injection of Penicillin,

Dose
Subject A B [ D E F Total
[ 2 3 1 6
11 3 4 4 11
111 4 1 2 7
v 1 2 1 4
v 4 1 3 8
VI 2 2 2 6
VI 2 1 1 4
VIII 4 2 1 7
IX 4 2 9
X 4 4 12
X1 1 0 3
XII 1 1 6
XIII 3 1 1 5
XIv 4 3 3 10
XV 3 1 1 5
XvI 3 3 3 9
XVII 3 2 1 6
XVIII 2 2 1 5
XIX 3 1 1 5
XX 2 2 7
XXI 1 1 4
XX11 3 3 1 7
XXIII 3 1 1 5
XX1V 4 2 1 7
XXy 1 1 1 3
XXV1 3 1 6
XXV11 3 1 7
XXVIII 1 1 4
XXIX 2 1 0 3
XXX 4 3 2 9
Total 43 38 38 34 19 18 190
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TABLE 4.2
Intermediate Calculations from Table 4.1

Dose A B C D E F Total
T 43 38 38 34 19 18 190
B 96 107 91 102 91 83 570
3Q=37-8 33 7 23 0 -34 -29 0
TABLE 4.3
Analysis of Variance for Table 4.1
Adjustment for mean 401.1111
Variation df Sum of squares Mean square
Blocks (subjects) 29 52.8889
Treatments (intra-block) 5 33.9259 6.7852
Error 55 26.0741 0.4741
Total 89 112.8889
TABLE 4.4

Estimated Mean Pain Records for Table 4.1

Dose A B [% D E F

Mean 3.03 2.33 2.68 2.16 1.20 1.28 + 0.20
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TABLE 5.1

Blocks of an a-Design for 30 Treatments in Four
Replicates and Blocks of Five
(treatments identified by numbers)

Replicate 1 Replicate 2
1 I 111 iv v VI 184 VIII IX X X1 XIl
1 2 3 4 5 6 1 2 3 4 5 6
7 8 9 10 11 12 8 9 10 11 12 7
13 14 15 16 17 18 16 17 18 13 14 15
19 20 21 22 23 24 21 22 23 24 19 20
25 26 27 28 29 30 29 30 25 26 27 28

Replicate 3 Replicate 4
XLII XIv XV X¥I XVII XVIII XIX XX XX1 XX11 XXIII XXIV
1 2 3 4 5 6 1 2 3 4 5 6
12 7 8 9 10 11 11 12 7 8 9 10
15 16 17 18 13 14 18 13 14 15 16 17
22 23 24 19 20 21 20 21 22 23 24 19
26 27 28 29 30 25 27 28 29 30 25 26
For use in the field, the numbers 1 to 30 would be blocks (sets of 5 treatments) would be put in random/
allocated in random order to the actual treatments or order. MWithin each block, the order of treatments ///

varieties. Each replicate would be set out as a super- would be randomized.

block of 30 plots. Within each superblock, the 6 //
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VI. FACTORIAL DESIGN

1. INTRODUCTION

One of the great advances in experimental design was

the realization of the gains to be achieved by having a
the/
of all
combinations of “levels" of two or more factors. Suppose

factorial structure of treatments. That is to say,
full set of treatments in an experiment consists

that an investigator wishes to compare the growth of ani
mals that receive two alternative diets and also wishes
to compare the effects of two environmental temperatures
Then a factorial experiment would define 4 treatments as
the 2x2 combinations of diet and temperature. If there /
were a third factor, perhaps two frequencies of feeding,
there would be 8 combinations.

in one
they /

The advantajes of including several factors
experiment have often been described. Primarily
are:

(i) Economy of effort and material are achieved becau
se the effects of each factor are estimated inde-
pendently (orthogona!]y) within one experiment;

(i1) The basis for inference on any one factor is -/
broadened because it is tested (in a balanced - /
manner) on a range of combinations of other fac-

tors;

be- /
tween factors , such as the difference in growth/

(iii) Only in this way can we study interactions

rates of animals on the two diets being greater /
in cold than in heated houses.

0f necessity, I restrict myself almost entirely to /
factors at 2 levels. Everything I say can be generalized
to other numbers of levels, say 3 temperatures, 3 diets,
and 3 methods of feeding. Naturally greater complica- 7/
tions enter when factors have 3 levels, but all that I
shall say about factors at 2 levels will generalize to
3 or 4 or 5. There is of course no reason in principle /
why an experiment should not include factors with diffe-
rent numbers of levels.

2. NOTATION

For formal discussion, I shall denote factors by /
upper-case letters A, B, C....; in practice I should try
to use a letter suggestive of the factor (D: Diets, T:
temperatures). 1 shall distinguish the two levels of a

factor by presence or absence of the corresponding lower
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case letter. Where a factor is quantitative, say 20° c,
25o C, it is natural ( not essential) to use presence of
the letter for the higher level, but for a non-quantita-
tive factor this identification can be arbitrary.

If we have 4 factors, A, B, C, D, the symbol ac will
denote the treatment with the upper or positive states /
of A and C, the lower or negative states of B and D. Si-
milarly b represents the treatment in which only B is at
the upper level. It is usual to represent the combina- /
tion of lower levels of all factors by (1), or simply 1.
Hence the 16 combinations are

1, a, b, ab, ¢, ac, bc, ..... , ¢d, acd, bcd, abcd.

This will be termed a 24 (4 factors at 2 levels) facto--
rial set of treatments.

3. ORTHOGONAL CONTRASTS

Table 3.1 lists across the top the treatment combina
tions for a 23 factorial. Suppose a 23 factorial experi-
ment is conducted as 3 randomized blocks of & plots.Cons
truct a linear function of the 24 plots using the quanti
ties shown in the line labelled A as the coefficients of
individual plot "yields", in agreement with the treat- /
ment symbols. This form the difference between the 12 /
plots with a and the 12 without a: division of  the
constrast by 12 is a measure of the effect on the yield
of changing the level of factor A. With b, B
in place of a, A, the same may be said of the next line.

variate y

Moreover these two contrasts are easily seen to be ortho
gonal (III, Section 3). The line labelled C is similarly
constructed; the contrast is orthogonal with A and with
B.

Look now at the line labelled AB. It can be regarded
as the difference between “plots with a -plots without a
in the presence of b" and “"plots with a - plots without/
a, in the absence of b". It is symmetric,in the sense /
that “a" and "b" can be interchanged in this statement .
It measures the extent to which the effect of factor A
is modified by factor B {and vice versa). It is kown as
the .interaction of A and B, written A,B or AB. This con-
trast is orthogonal with each of A, B, C. Similar - /
comments follow for AC and Bc. Finally the line ABC is a
contrast for the three factor interaction, measuring the
extent to which the AB interaction is modified by factor




C. We now have 7 mutually orthogonal contrasts, and con-
sequently a way of subdividing the treatment sum of squa
res (7 d.f.) into single squares for the main effects A,
B, C, and the interactions.

The analysis of variance can be presented as in Ta--
ble 3.2. If required, a test of significance can be made
on each of the components, but the important features /
are that the effects of three factors are estimated si-=
multaneously from one experiment, and evidence is acqui-
red on the various interactions without which understan-
effect
of A is estimated from 12 replicates of plots with and

ding is incomplete. Note particularly that the
without a, and the effects of B and C are estimated with
the same replication from the same plots. Yet only 24/
plots have been used in all.

4. CONFOUNDING

A good scientist or technologist is likely to think
of many factors that he would like to include in his ex-
periment. The total number of treatment combinations /
then becomes large (e.g. 25 = 32), exceeding the size of
block that is available or that is believed suitable for

controlling variance by reducing intra-block variance.

If one or more members of the orthogonal set of -/
treatment contrasts can be nominated as of little inte--
rest (perhaps because a multifactor interaction is -/
thought likely to be negligibly small or because a main
effect is already so well understood that further infor-
mation on it is not wanted), we can adopt the device of
confounding. For example, a 23 experiment can be conduc-
ted in blocks of 4 (with randomization of order within /
each block), by using the two types of block.

(i) 1, ab, ac, bc
(ii) a, b, ¢, abc.

In the experiment had 6 blocks of 4, 3 blocks of each ty
pe, the interaction ABC is congounded between blocks : /
the contrast labelled ABC in Table 3.1 can be estimated
only by the difference between all blocks of type (ii) /
and all of type (i). A1l other treatment contrasts are
still orthogonal with blocks. The analysis of variance /
takes the form of Table 4.1. The calculations involve no
thing new; the 6 treatment contrasts are calculated exac
tly as before, and the sum of squares for blocks follows
the standard rules.

Confounding becomes more important in larger experi-

41

D. J. FINNEY

ments, but the same method can be applied and generali--
zed. For example, a 25 experiment could be conducted in
blocks of 16 by confounding ABCDE. One block type will
consist of all treatment combinations with an even num--
ber of letters (1, ad, bcde, etc.), the other of all com
binations with an odd number of letters. Alternatively,/
one may confound any other interaction such as ACD or /
even the main effect D if that were thought of little in
terest. A confounding in blocks of 8 can be obtained by
simultaneous confounding of two contrasts. For example ,
ABCDE and ADE might be chosen but then necessarily BC is
also confounded. The rule is that if any two contrasts /
are confounded so also is their "product" where in the
product the square of any letter is deleted:

ABCDE.ADE = AZBCIEE2 = BC

1f, as is commonly the case, the wish is to restrict con
founding to the higher order interactions, a better choi
ce will be ABCD and ACE,which must also confound AZBCZDE

or BDE.

Of course this rule is not an arbitrary restriction;
it is unavoidable. If you divide the combinations of a/
2" factorial into 4 types of block, with 2n-2
combinations in each, in such a way that the contrast /
between types (i), (ii) and types (iii), (iv) confounds
one nominated interaction (or main effect), and the con-
trast between (i), (iii) and (ii), (iv) confounds a se-
cond interaction, you will find that the constitution of

treatment

the block types is uniquely determined; moreover, the /
contrast between (i), (iv) and (ii}, (iii) necessarily /
confounds the “"product" of the two interactions.

The blocks for design are easily constructed. First
choose treatment symbols that contain an even number of
Jower case letters from the letters forming the confoun-
ded interactions. For ACE, BDE,ABCD, these are

(i) 1, ac, bd, abcd, abe, bce, ade, cde.

Note that these have the property that the
duct of any pair (where again any letter oc- /
curring twice is deleted) is another one of the
set of eight (ab.ace = bece), so that only 3 inde-
pendent combinations have to be found. These 8 /
forms blocks of type (i). For (ii), take any /
treatment not already included, say ab, and multi
ply all the 8 by it;

pro-

(ii) ab, bc, ad, cd, e, ace, bde, abcde.
Similarly, for (iii) multiply mem-ers of (i) by,/




say, d;

(iii) d, acd, b, abc, abde, bcde, ae, ce.
The remaining 8 combinations form (iv), and can
be obtained by multiplication by, say, acde;

(iv) acde, de, abce, be, bcd, abd, c, a.
You may easily verify that three orthogonal con--

trast concisely symbolized by

(i)+(ii)-(iii)-(iv)
(i)-(3i)+(iii)=-(iv)
(i)-(ii)-(i1i)+(iv)

form the interactions ABCD, ACE, BDE respectively.

If the experiment has several replicates, one may /
confound the same set of interactions in each. An alter-
native is pantial confounding, where a new set of con-
founded interactions is used for each replicate; each in
teraction is then estimated from all replicates in which

it is not confounded.
5. SINGLE REPLICATION

If some high order interactions are negligible, the
mean squares corresponding to them will have expecta---

tions that scarcely exceed o?

. A common practice is
to take advantage of this by including as many factors /
as possible and using only a single replicate; one way
then allocate various interactions to form a sum of squa
res that should give only a very slightly biased estima-

2

te of o . For example, suppose that an experimenter

were contemplating using two replicates of the design/
for 25 in blocks of 8 in Section 4. He might do better /
do add F, an extra factor (almost certainly he has fac-
tors in mind that he would like to include), and use a

single replicate confounding perhaps

ACE, BDE, ABCD, ADF, CDEF, ABEF, BCF.

The computations follow the standard pattern. For the /
error sum of squares, 7 d. f. could be obtained from ABC
DEF and the 6 five-factor interactions (ABCDE, etc.); a
further 12 d.f. from unconfounded four-factor interac---
tions might be added to these. Thus the analysis of va--
riance would have 7 d.f. for blocks, 7 or 19 d.f. for/
error, and the remaining 49 or 37 d.f. for individual /
main effects and interactions.
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Thus with very little disadvantage an extra factor /
with  the
first five have been added to the imformation from the /

and its potentially interesting interactions

experiment.

If originally 4 replicates of of the 25 had been in-

tented, factors F and G might have been added so as to
give a single replicate of 27.

6. FRACTIONAL REPLICATION

This idea can be carried further. If a high order in
teraction is negligible, not only might it be used for /

2 byt also no harm will come from confu---

estimating ¢
sing it with another more interesting main effect or in-
teraction. As a trivial case, consider a 24 factorial /
structure in which results, y, are available for only 8
plots; they are

1 ab ac ad bc bd cd abed

Then the contrast

'y1+y2+.Y3+y4'.Y5'.y6'.y7+y8
estimates A (to be multiplied by 1/4). But if we attempt
to estimate BCD we find that we need exactly the same

contrast. We can write

A = BCD
Similarly
B = ACD

and other relations are obtained. All of these can be ex
pressed symbolically by

ABCD = 1

with the understanding that again the product rule can
be used, this time to identify aliases. Thus D.ABCD= ABC
hence

D = ABC

and D is aliased with the interaction ABC. This means /
that ABC cannot be estimated distinctly from D,a serious
objection to the fractional replication of 24; still /

worse are aliases such as

AD = BC




However 24 merely illustrates the method. With more
factors, the situation is different. For 7 factors and

ABCDEFG = 1
typical aliases are
B = ACDEFG
DG = ABCEF
ABE = CDFG

all of which may be tolerated, in the sense that the re-
sulting ambiguities of interpretation may be unimportant

When the number of factors is large, 1/4 or 1/8 re--
plication may be practicable. Also fractionally replica-
ted experiments can be confounded, but I must omit de--
tails.

7. FACTORS AT THREE LEVELS

Often it es desirable to have three levels for each
factor - three temperatures, three diets, and so on. The
notation and methods generalize. Whereas the special al-
gebra of the 2" designs is based upon

and

For example, the 9 treatment combinations for 32 are

1, a, ad, b, ab, azb, bz s abz, azb2

where a, a2 mean the middle and the upper levels of fac
tor A with the lowest of B, azb is the combination of /
the upper level of A with the middle level of B, and so
on. Note that the product of any two is also one these :
a%b.a%% = a*3 = a

The groups of treatments
(i) 1, a’b, ab
(ii) a, b, a2b2
(ii1) a2, ab, b

2

will confound 2 d.f. from the interaction that has in /
all 4 d.f. These d.f. are symbolized by AB, AZBZ. The ru
les of orthogonality are better illustrated by the con
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founding of 33 in blocks of 9. We can choose a pair of d.
f. from the ABC interaction (8 d.f. in all) such as ABzc,

AZBCZ; note that each is the “square" of the other, since
(ac)? = a%s%c? - a%c?

To confound these, choose all elements of the form aabBcY

such that the sum of products of the indice of the con -

founded effects with the corresponding indices a,8,Y 1is
a multiple of 3. More concisely

a+ 28+ vy

0 (mod 3)
and

2a + B+ 2y =0 (mod 3)

The second condition is equivalent to the first. The ele-

ments are easily found as

(i) 1, ab, azbz, acz, azc, azbcz, abzc, bc, bzcZ and /
these constitute block type (i). For this principal
block, the square of any element and the product of
any two elements also belong to the set. As for 2"
designs, form another block type by multiplying /
each element of (i) by any new element, say c:

(i1) ¢, abc, azbzc, a, a,Cys azb, abzcz, bcz, b2, and /
then form type (iii) by one more multiplication,say
2,22
by a b c™:

(151) a2%c2, c2, abc?, bic, ab®, ac, b, a%, a’be. This ,
and three similar designs confounding ABCZ, AZBZC /
or AB2C2, A%BC or ABC, A%8%C%, are of great practi-

cal value.

Another valuable set of designs confounds 3' in 9
blocks of 9, confounding for example

age, A28%c2, a%sp, as20%, Bo, Bc2DZ, ac’D , AZco?

You may like the exercise of constructing some of the 9
block types. There is indeed a useful fractional replica
te design or 1/3 of 35 in blocks of 9. I shall not have
time to discuss these in detail, but I will gladly talk
further about them if asked.

8. A GENERAL THEOREM

An important general theorem is that, for any prime/
number I

A o experiment can be arranged in n"P blocks




of 1P plots each, without confounding either main -/
effects or 2-factor interactions, if and only if

n < (mP-1)/(n-1)

An equivalent theorem relates to fractional replication
I shall not prove this unless asked.

9. MIXED LEVELS
Factorial

numbers of levels, such as 22x3, 2x33, or 2x3x4. Some-
times these are essential to the desired character of ex

designs can have factors at different /

TABLE 3.1
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periments. If they can be conducted in randomized comple
te blocks, they present no difficulty. Confounding, how-
ever, is more complicated than before, and usually
sults in partial loss of information on several

re-
con- /
trasts. Examples can be found in the textbooks I have /
mentioned, but [ unlikely to have time to discuss them
in lectures. If all factors have either 2 or 4 levels ,
it may be practicable to regard each 4-level factor as /
a pair of factors at 2 levels in order to devise a con--
founding arrangement. Thus a 23x42 design might be con-
founded as though it was 27. This requires considerable
care, as neglect of the true nature of the factors
prove disastrous.

may

Orthogonal Contrasts for a 23 Experiment

Treatments
Contrasts 1 a b ab c ac bc abc
A -1 +1 -1 +1 -1 +1 -1 +1
"B e S TR S T | -1 o4l +1
AB +1 -1 -1 +1 +1 -1 -1 +1
C -1 -1 -1 -1 +1 +1 +1 +1
AC +1 -1 +1 -1 -1 +1 ~1 +1
BC +1 +1 -1 -1 -1 -1 +1 +1
ABC -1 +1 +1 -1 +1 -1 -1 +1

TABLE 3.2

Form of Analysis of Variance for 3 Randomized Blocks of a 23 Factorial

Variation d.f.
Blocks
A

B

AB

C

AC

8C

ABC

- e et = = = N

Treatments 9

Error 14

Total 23

Sum of squares
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TABLE 4.1

Table 3.2 Modified for Confounding of ABC

Variation d.f. Sum of squares Mean square

Blocks
A

B

AB

c

AC

8C
Error 12

bt bt = b e e N

Total 23
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VII. FURTHER DEVICES IN DESIGN

1. SPLIT PLOTS

Sometimes an experiment uses two (or more) different
sizes of unit for the application of treatments. More
particularly, levels of one factor may be allocated to
plots, and levels of a second factor may be allocated
to subdivisions of each plot (or subpfots). For example
dietary differences can be studied only on whole ani---
mals but skin reactions to an inoculation can be measu-
red at several points on each body. Therefore an experi
ment on the extent to which skin reactions are modified
by diet might use rats as plots in a randomized block /
design for diets, with 4 types of inoculation on posi--
tions as subplots. In agricultural trials, irrigation /
may have to be controlled over large areas, so that a
comparison of irrigation rates must use large plots, /
but varietal comparisons can be put on subplots of the
same experiment.

The analysis of variance presents no difficulty, but
it has one important new feature: there are two /
distinct error lines corresponding to interplot and /
intraplot variation. Table 1.1 illustrates this for an
experiment on 5 diets tested on 6 litters of 5 rats, /
with 4 inoculation treatments tested on each rat. The
arithmetic should always be done in terms of the /
smallest experimental units, the subplots, so that ( in
accordance with Lecture III) the sum of squares for /
main plots (29 d.f.) is found as

L (mainpiot total)? (grand total)?
A - .

Other parts of the analysis are calculated in the usual
symmetry
should make clear that all the components are orthogo--
aid of

way, and take their places in Table 1.1. The

nal. Of curse means must be compared with the
of the appropiate error mean square.

There can be other reasons for using split plots. /
For example, if an experiment continues for a long time
the experimenter may wish to modify it by adding a fac-
tor; one way of doing this is to put the new factor on
subplots, but the alternative of confounding may need /
examination. Again, occasionally an experimenter wishes
to achieve relatively greater precision on one factor /
than on another: he can make use of the fact that /
subplot variance is usually smaller (sometimes very /
much smaller) than the main plot variance.

The split plot principle can be extended so as to /
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have more levels of splitting, giving split-split plots
or split-split-split plots! This is seldom a desirable
feature of design, but it can useful. The great mistake
is to regard the splitting of plots as an easy way of
fitting factors into an experiment, to be adopted /
without thought of other types of confounding. Note
that these designs can be alternatively described in /
terms of confounding. For the experiment in Table 1.1,/
we could speak of diets as beingconfounded between rats
whereas inoculations and the interaction are unconfoun-
ded.

2. REPEATED MEASUREMENTS

In other circumstances, each main unit of the experi
ment may be measured several times for rather diffe---
rent reasons. One situation is that a particular proper
ty must be studied by sampling. In a field experiment /
on a ceral crop, the total weight of grain for each /
plot will be measured. However, nitrogen content of the
grain may be studied by analyzing several small subsam-
ples from each plot; if interest lies in plant size or
insect damage, subsamples of individual plants may be /
have been measured or recorded within each plot. /
Although there is an analogy with split plots, no treat
ments or other structure is imposed on the sampling /
units. So far as the experiment is concerned, any inter
pretation of treatment effects on nitrogen content or /
insect damage will be based upon plot means for the
sampling. A complete analysis of variance, such as /
Table 2.1, again calculated in terms of the smallest /
units, is convenient, but only the plot analysis is re-
levant to assessment of treatment effects. The magnitu-
de of the sampling error is useful only for
whether sampling was intensive enough so that variance/
from this source makes only a small contribution to the

indicating

plot variance; it can help to indicate whether in a fu-
ture similar experiment 3 o 6 sampling units should be
taken from each plot instead of 4.

Similar sampling considerations arise in many /
circumstances. In clinical medical studies, replicate /
analyses of blood samples may be made for biochemical /
or hormonal determinations. If alternative methods of
manufacture of an electronic component are to be compa-
red, the plot may be a manufacturing batch, from each
of which a few sample components are selected for /
measurement of quality or durability. In all these

circumstances, to use as the error variance a mean /




square with 110 d.f
would be totally wrong, since this would be a

in Table 2.1 or its equivalent /
composite
of two variances that might be very unequal. This is a
mistake that is rarely made, though I have seen it.
A much more common mistake, of the same kind and

repeated in time. I shall illustrate by reference to

/
equally serious, occurs where measurements on a plot /
a
simplified account of an experiment on a marine snail /
(Finney, 1978b, 1982c). The aim was to see whether modi-
fying the number of its predators affected its numbers.
The aim was to see whether modifying the number of its /
predators affected its numbers. Six plots were marked in
the intertidal zone of a beach on the Pacific coast of /
the USA. Two plots, selected at random, were untouched ;
from two more the members of a predatory species were re
moved; on the remaining two, predators were added to tho
se naturally there. Subsequently, the number of snails /
on each plot was counted about once every two months for
a year. (The counts were in reality on small sample ///
areas, but the sampling is a distinct issue from the pre
sent discussion and can be ignored). How should the 36 /
"data", 6 counts on the 6 plots be analuzed? The tempta-
tion, totally wrong, is to extract 2 d.f for treatments/
and to attribute to treatment means standard errors ba--
sed upon a mean square from the remaining 33 d.f. Treat-
ments have been applied to whole plots, and therefore on
1y variability between whole plots is relevant to  the
question of whether treatments have affected snail num--
bers. We can indeed make use of the separate counts on

each plot, as is shown in the analysis in Table 2.2.

First we can look at mean or total counts per plot. /
Then, independently, we can look at the linear regres---
sions of counts on time, which could be at least as rele
vant to the effects of the initial interference with the
plots as are the means. A further analysis can be made
of another contrast representing a quadratic  component
of trend. The remaining degrees of freedom, shown as /
grouped together in Table 2.2, can be similarly subdivi-
ded for further components of trend. Other ways of /
arranging the analysis can be based upon alternative /
subdivisions of the degrees of freedom, but one princi--
ple must be maintained. Whatever mean or contrats among
the 6 dates of counting is to be discussed, the error /
variance must be obtained from the variability in this
quantity among replicate plots (here the pairs of identi

cally treated plots).

Unfortunately, many scientists make the mistake of /
can be
condensed into 2 d.f. for Treatments, 5 d.f. for Dates,

assuming that an analysis of such an experiment
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10 d.f. for the interaction TD, and the remainder for an/
error that is supposed homogeneous. In reality the errors
appropriate to different contrats may differ widely. I
would expect to find the error mean squares in Table 2.2
decreasing steadily as I read down the table (though with
so few degrees of freedom the pattern may be irregular) .
A totally false sense of security in conclusions can come
from a misunderstanding of the variance structure of an
experiment. Evidently this experiment is inadequately /
replicated unless the effects of treating the plots are
very large.

The actual experiment on which this discussions is /
based was more complicated (Finney, 1982c). Counts were
also made on all plots during the year before the treat--
ments were applied. For practical reasons, no more than 2
plots could ever be counted on one day and intervals were
erratic. It was not practicable to have more than 6 plots
The temptation to use the apparent replication of indivi-
dual counts was great, but is not made more legitimate by
the additional complications. Not surprisingly, the expe-
riment gave no convincing evidence of any effect of /
treatments.

3. CROSS-OVER DESINGS

An important experimental device, especially with /
human or animal subjects, is that of changing treatments
once or more during the course of an experiment. By intro
ducing a suitable balance, average differences between /
subjects can be eliminated and the variance relevant to
treatment comparisons can become entirely intra-subject .
Table 3.1 shows (a) the simplest form for 2 treatments /
and (b) an elaboration of this. With the first desing, /
simple totalling for A and for B gives a comparison
that is balanced over subjects and over periods. The
second desing needs more thorough discussion than I have
time for, but even a cursory inspection shows the possibi
lity of examining residual as well as direct effects: we
can compare A after A with A after B, B after A

with B after B.

Table 3.2 shows a more complicated cross-over { or
change-over ) desing for 4 treatments. Note that in each
of periods 2, 3, 4, the three subjects on any one treat--
ment have received the other 3 treatments in the previous
period, so that again we can estimate not only the /
effects of treatments currently given but also residual /
effects from previous period. Table 3.2 can be wused in
several variants. The experiment might be run  with
periods 1 and 2 alone, though 12 subjects would then /
scarcely suffice and one would hope to repeat everything




on a second set of 12. The allocation of treatments to /
subjects then has a balanced incomplete block structure;
this is also true if the experiment is run with periods
1, 2, 3, alone. Only if all 4 periods are included do we
have full balance over subjects, with no partial /
confounding of treatments between subjects. If time /
fifth
period that repeats the treatments of period 4, so that

permits, there can be advantages in having a
estimates are also available relating to A after A, B,
after B, etc.

I shall not discuss the statistical analysis. It must
again use least squares for estimation and develop an /
analysis of variance in terms of appropriate orthogonal
contrats.

4. SERIES OF EXPERIMENTS

In some branches of science and technology, an experi
mental programme may need to comprise a series of unit
experiments. A possibility is to repeat one standard /
experiment, of fairly simple design, at many places or
in successive years. This can be useful when the number
of treatment combinations is small. Such a set of experi
ments will allow treatment effects to be averaged over a
range of conditions, as well as giving information on /
the extent to which effects vary from one site to /
another. This approach has been used for clinical compa-
risons between drugs conducted in several hospitals or
clinics, and for drug standardization in a set of labora
tories.

In agricultural research, factorial design encourages
interest in much larger numbers of treatment combina----
tions. However, if it is desired to study fertilizer /
responses over a region by trials at a sample of widely
distributed sites, a block of a suitable confounding /
scheme might be allocated to each site; thus a group of
sites might constitute one replicate. A comprenhensive /
analysis of results would enable average unconfounded /
effects to be estimated for the region; in addition, /
there is the possibility of looking for any differences
between sub-regions in the magnitudes of effects as well
as obtaining some information on the confounded interac-
tions. Each site can be regarded as a fractional replica
te, though there may not be enough plots at a single si-
te for the information from it to be much use alone. The
3" confounded designs are especially suitable. Other /
arrangements are possible, in which the treatment combi-
nations at a site are not determined by blocks of a /
confounding scheme. These can have practical advantages,
but they are for specialized agricultural purposes and I
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shall not discuss them further.

When series of experiments are planned, one must be /
clear whether the aim is to estimate effects under diffe-
for /
estimating average effects applicable to all environments

rent conditions or to use a sample of environments

For example, one might wish to estimate parameters corres
ponding to dietary differences for an animal species, and
to do so under various climatic conditions or for various
ages and types of animal. Similar information may be /
wanted on each category of animal, and pattern among cate
gories may emerge, but the experiments are to be seen as
leading to a broad understanding. On the other hand, one
might wish to estimate effects of diet averaged over con-
ditions and categories as the basis of advisory policy /
applicable to all; ideally, the conditions, categories, /
or sites should be a random selection from all available.
Experiments repeated over years will usually have this se
cond emphasis, since annual differences have no characte-
ristics identifiable in advance. Repetitions over places
or other contemporary subgroups may have either objective

The distinction is particularly clear and important in
agricultural research. Are experiments on varieties of a
crop or on amounts of fertilizer, conducted at many sites
and for several years, intended for estimating what is /
best separately for many places or sub-regions, though /
necessarily averaging over years since seasonal condi---
tions cannot be predicted in advance? Or are they inten--
ded also to average over experimental sites so as to lead
to a policy for the whole region studied? In the latter /
circumstances, estimation of the relevant parameters must
take account of treatmentxsite and treatmentxyear interac
tions as components of error additional to the intra-expe
rimental variance. These interactions measure the consis-
tency of effects over sites and over years, and are there
fore very relevant to the advisory policy. In designing /
such series of experiments, the replication over sites /
and over years must be carefully decided, since the requi
red measure of precision may be far more dependent on the
interactions than on replication within each site.

5. RESPONSE SURFACE DESIGNS

When all the factors for an experiment are measurable
on continuous scales (weights, lengths, concentrations,/
times, etc.), a different approach to design is possible
For two factors (generalization to more is obvious}, the
combinations of levels can be represented by coordinates
(xl. xz). Then the expectation of y for fixed X1» X5 /
can be expressed as

Y = Fxps xz) , (5.1)




where F{ ) is a continuous function. Within a range of
values of X and Xp this function should be adequa-
tely approximated by a polynomial. For example, we /
might try

2
You Byt Byxy * Byxy * B XY

5.2
* BXy%p * BopX7 - (5:2)

Design then consists in specificacion of a set of coor-
dinates (xl, x2) in such a way as to optimize estima-
tion of the g parameters. The computations are essen
tially those of multiple regression, but a well balan--
ced design may greatly simplify the structure of the /
X'X matrix. The choice of design must be constrained /
by limitations on the ranges of X and X, that can be
used, for equation (5.2) cannot be valid or even a good
approximation over unrestricted ranges.

These response surface designs have been found parti
cularly useful in chemical engineering and other indus-
trial contexts, where emphasis is on finding the combi-
nation of levels that will produce the highest yield. A
guess at the optimal factor levels can be taken as the
origin of coordinates, 0, for all factors, so that the
design is centred on this point. The designs seem to /
have found less favour in pure and applied biological
sciences, despite arguments that they avoid use of the
extreme combinations that a conventional factorial will
require. The reason may be in part that they seem more
difficult to interpret in terms of effects of single /
factors; perhaps more importantly, non-quantitative /
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factors are often wanted in biological experiments, and
response-surface designs are less appropriate for a mix-
ture of quantitative and qualitative factors. Cochran &
Cox (1957) have a good elementary account of this topic.

6. SEQUENTIAL EXPERIMENTATION

In some types of experiment, individual "plots" or /
subjects present themselves in a temporal sequence, and
in some of these the result for each subject may be /
available before the next is treated. Some clinical /
trials are of this kind, the effect of treatment being
rapid relative to the rate at which new patients are /
encountered.

It is then possible to use ideas adapted from the
theory of sequential sampling. The duration of the expe-
riment, and perhaps even also the determination of treat
ment for each subject, can be made dependent upon all
past results. Thus replication can be intensified for /
the apparently more successful and more interesting
treatments, and the experiment can end as soon as the
evidence suffices to demonstrate treatment differences.
In practice, the methods are usually limited to compari-
sons of two treatments.

I am not familiar with this type of experimentation /
and do not propose to discuss it.

TABLE 1.1

Form of Analysis of Variance for a Split Plot Experiment

variation d.f. Sum of squares Mean square
Litters 5

Diets (D)

Error (main plot) 20

Rats 29

Inoculations (1) 3

D.1 12

Error {sub plot) 75

Total 119
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TABLE 2.1

Form of Analysis of Variance for a Randomized Block Experiment
on 5 Treatments in 6 Blocks, with 4 Sampling Units per Plot

Variation d.f. Sum of squares Mean square
Blocks 5

Treatments

Error 20

Plots 29

Sampling error 90

Total 119

TABLE 2.2

Form of Analysis of Variance for an Experiment on a Marine Snail

Variation d.f. Sum of squares Mean square
Mean counts
Treatments 2
Error (1) 3
5

Linear trend

Average 1
Treatments 2
Error (2) 3
6
Quadratic trend
Average 1
Treatments 2
Error (3) 3
6
Other trend components
Average 3
Treatments
Error (4-6) 9
18
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TABLE 3.1

Cross-over Designs for 2 Treatments

(a) Period
Subject 1 2
I A
11 B A
(b) Period
Subject 1 2 3
I A A B
11 B B A
I11 A B B
v B A A

For practical use, what is shown above would be repeated several times;
that is to say, each treatment sequence would be assigned to several /
subjects.

TABLE 3.2

Cross-over Design for 4 Treatments
Period

Subject
I
I1
I
Iv
v
VI
VII
VIII

XI
XI1

SO W OO0 OO0 @D > -
o P O OO PP OWO N
> 0 @0 O O 0O @ > O > O ;W

4
D
A
C
B
B
A
[%
D
A
C
B
D
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VIII.

1. ETHICS OF EXPERIMENTATION

Research in clinica medicime inevitably introduces
questions of ethical behaviour by doctors and others. /
To what extend is it ethically justifiable to give to a
human being a drug (or other treatment) that may damage
nis health at the same time as benefitting it, or that/
may even produce damage without benefit? Under what -//
circumstances (if any) is it permissible for a treat-//
ment to be tested in some persons, with a risk of harm,
in order that others may benefit? It is not my place to
lecture on ethics, but the statistician cannot totally/
evade the issue.

The statement is often made that no new drug should
be released for human use until it is known to be bene-
ficial and without harmful side effects. Unfortunately/
no amount of laboratory testing or of trial in other a-
nimal species can guarantee good effects in man. of ///
course, experience of biology and pharmacology will in-
dicate types of non-human study that commonly predict/
human response. Nevertheless, whatever the existing in-
formation and however good the intention, the first in-
troduction into human subjects is experimental. If the/
-=-//
accepted, no new drugs will be introduced scarcely an /

doctrine of no human use without known safety is

acceptable situation. Surely the conclusion must be /
that the necessarily experimental first human uses //
shall be planned as good experiments. For this reason,/
statisticians have maintained that the critical time /
for clinical experimentation is when there is confiden-
ce that a new drug is not seriously harmful but comple-
te uncertainly as to whether or not it is an improve--/
ment on the drug it might replace.

If there is to be a formal planned experiment, it /
must have a design that will use the available subjects
and the information obtained from them as effectively /
as possible. An ill-planned experiment is always unethi
cal. Moreover, the design has to operate under the two/
constraints that:

(i) The experiment must stop if the evidence is -/
clear that one treatment is superior to the - /

others;

(ii) An individual patient will be withdrawn if his /
physician is convinced that the treatment allo-/
cated to him is doing more harm that good.Course

these remark of apply to experiments that ///
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CLINICAL TRIALS; BIOLOGICAL ASSAY

must be conduced on sick persons whose chances /

of recovery are good. Ethical considerations - /

will be somewhat different for treatment of mi-/

nor ajlments such as headaches, nausea or brui-/

ses. With treatments that may reduce pain or --/

even offer some hope of cure for a terminal ill-

ness, there may be greater willingness to risk /

quite serious side effects. Questions of patient

consent, volunteer subjects, and the like are -/

perhaps not very relevant to statistical matters,
though the statistician must remember the possi-

bility that patients (or healthy persons) -- //

willing to participate in an experiment may not /
be typical of the general population.

In recent years, the ethics of animal experimenta-/
tion have come under closer examination. I do not think
that this is the place to discuss the legitimacy of -/
using animals (and causing them to suffer) for the be-/
nefit of man; 1 believe that any such discussion should
distinguish between experiments aimed at benefits to -/
human medicine and health, those for testing cosmetics/
or tobacco or other inessential human pleasures, those/
purely for the increase of knowlegde, and so on. [ hope
we may all again agree that, if there is to be an expe-
riment, it should be planned so as to use resources and
materials effectively with minimal distress to the ani-
mals. In particular, I believe it wrong to use more a-/
nimals than are needed for the precision appropriate to
the experimenter's aims, and also wrong to use so few /
animals that imprecision makes all results worthless.

If animal experiments call for ethical consideration
what about insects, and plants?

Whatever the nature of experimentation, the statis-
tician has a right to be informed on any matters that/
may to him introduce some ethical conflict. He has a //
conscience no less important than that of others ina/
research team.

2. CLINICAL EXPERIMENTS

In their combinatorial structure, clinical experi-/
ments are usually very simple. Often only two treatments
are compared. This is because of the very substancial //
organizational problems. In many instances, most of the/
mangement, measurement, and recording may have to be un-
dertaken by people whose primary commitment is not to -/
research but to patient care, and the latter must take /
priority.




Nevertheless, immense improvements in clinical //
experimentation have been achieved in the last 30 -//
years. Especially important is the acceptance of ran-
domization. This should not encounter ethical diffi-/
culties. If an experiment is conducted when no treat-
ment is known to be the best, there should be no ob-/
jection to random allocation of treatments to pa-- //
tients; if there are strong reasons to believe that /
drug B is better than drug A, the ethical issue is //
not randomization but the experiment itself. The //
process of randomization must be protected against //
any adjustment or manipulation that may cause bias! /
Ideally the order of events is that a patient is -- /
accepted as suitable for inclusion and only then is a
sealed envelope opened to tell which treatment he is/
to receive. Also vitally important is the recognition
that some from of contwof treatment must be included/
for comparison with new treatments. According to cir-
cumstances, a control may be absence of any positive/
treatment, or a placebo beleived to have no true - /
effect, or the existing standard treatment for a di-/
sease.

The danger that assessment of results may be -//
affected by the patient, and by nurses or physicians/
who examine nim, is well-known. In order to avoid any
subjective influences, it is desirable that neither /
the patient nor those who care for him or who assess/
results should know which treatment he has had. This/
may be practicable where the treatments are similar /
drugs, but is not in a comparison of chemotherapy - /
with surgery. Of course there must be provision for /
breaking the code in an emergency.

When treatments must be compared in patients suf-
fering from a disease, subjects suitable for inclu- /
sion are likely to be identified over a period of ti-
me. Randomized blocks can still be used. Blocks may /
be defined in terms of sex, age, physiological charac
teristics, medical history, etc., and randomizations/
performed in advance. The first female aged 20-30 is/
given to the treatment first in randomized order for/
a block so defined, and so with subsequent patients./
There may be a number of blocks of "females, 20-30",/
or all such patients may be regarded as one block - /
with many replicates.

If treatments are such that patients on different
treatments will be in the care of different physi--//
cians or different nursing staffs, care must be given/
to standardization of conditions; even then, the - //
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possibility must be kept in mind that apparent diffe-//
rences in results are in part subjective or psychogenic
in origin. In order to obtain more patients, collabora-
tion among several hospitals may be arranged. Each hos-
pital should be seen as having its own small experiment
with complete blocks, and at all costs confounding of/
treatment with hospital differences must be avoided.

Simple factorial experiments have been used, and /
probably ought to be used more often, but the number of
treatment combinations is a limitation. I recall one 23
experiment, I think on the management of diabetics,that
invoived the collaboration of about 10 hospitals in the
USA each of which studied equal numbers of patients on/
each of the 8 treatments. The experiment had to conti-/
nue over several years, and of course many different /
measurements and records were made on each patient. //
Inevitably there were losses by death and other causes.
The results were controversial. largely because diffe-/
rent hospitals were inconsistent in their evidence. ///
Despite very careful planning, possibly instructions on
treatments were not always interpreted the same way or/
measuring processes were inadequately standardized. ///
Nevertheless, the work was valuable: had the experiment
been confined to one hospital, not only would replica-/
tion have been much less but treatmentxhospital inter-/
actions would have been unsuspected.

Sequential designs have been strongly advocated for
clinical research, because they permit a decision and /
ending of the experiment as soon as treatment is demons-
trated superior to an alternative. They have been used,/
effectively, but the ethical attractions are perhaps ///
less great than first appears. Various arbitrary deci-//
sions must be taken at the start in order to define the/
rules for termination. Continous watching of results may
introduce greater ethical uncertainties about whether //
the experiment should terminate even earlier. A good ex-
periment should give much more than a conclusion "B is /
better than A", such as information on "how much better”
and information on many aspects of the health of pa- //
tients. Moreover, sequential design is practicable only/
when the time between administration of treatment of re-
sult is short relative to that between successive pa-//
tient arrivals. An alternative procedure that has been /
suggested is to modify treatment allocation as an expe-/
riment continues. Initially treatments A, B can be allo-
cated to successive patients with equal probabilities; /
if early results point towards a superiority for B, the/
probability for B can be increased. The object now is to
research the end of the experiment with an adequately //




precise comparison between A and B but with a minimun /
number of treatments having been allocated to the ///
poorer treatment.

If patients require to be treated over a long pe- /
riod but the effect of any one dose is short and ra-/
pidly cleared from the system, cross-over designs are /
valuable. Drugs for relief of long-continuing or fre-//
quently recurring pain (e.g. rheumatism, migraine) can/
be compared in this ways; the measure of succes then is
likely to be a subjective judgement by the patient, and
maintaining his ignorance of whether he is currently //
receiving a placebo, a familiar remedy, or a new drug /
will be important.

3. BIOLOGICAL ASSAY

This large subject is concerned with laboratory ///
standardization of drugs, and introduces some special//
problems of experimental design (Finney, 1978a). I can/
outline only briefly. Suppose that an animal receiving/
a dose z of a standand drug, S, produces a measurable
response y such that

E(y/z) = Y = F(2) (3.1)

where F(z) is a monotonic function of z involving ///
unknown parameters. A new but closely related drug, //
or a newly manufactured batch of the old, can be /77
standardized relative to S if and only if there is a //
constant ¢ such that a dose 2z of the new drug, T/
(the test preparation ), behaves exactly like a dose /

Pz of 5. That is to say, for T the dose-response /
relation

Y = Floz), (3.2)

where F is the same function as for S in (3.1). If, as
is often the case, T contains the same active principle
as S but may be diluted to a different extent by mate+
rials, the refative potency, p, is not just a pro- //
perty of the animal system in which y is measured but
js the ratio of the concentrations of active principle/
in'S, T - a "rate of exchange"” that is needed in hwman/

therapeutic practice for determining dosage of T.

In the simplest and most important case, over a wi-
de range of doses F(z) is a linear function of the lo-/
garithm of dose. Write

x = Nz , (3.3)
and
w=Ltnp . (3.8)

Then for S, T
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(3.5)
(3.6)

YS =a+ 8,

YT = q+ Bu+ BX .

From a comparative experiment on various doses of S, T,
two parallel regression equations can be estimated:

Tg = a5 + Bx, (3.7)

Yp=aptoex, (3.8)
and then

M= (8 - ag)/b (3.9)

is an estimator of I shall comment on the /
design of such experiments, under the assumption that /

all responses, y, are Normally and independently dis-//
2

tributed about Y with constant variance ¢

A second important case is that in which y isa /
Such a //
quantal nesponse may be survival-death, absence or pre-

binomial variate taking only the values 0, 1.

sence of convulsions, death or germination of a seed or
spore, etc. We can now interpret F(z) as the probabi-/
Provided that /
subjects are tested at
a dose the number responding will follow a binomial - /

lity of a positive response at dose z.
subjects are independent, if n

distribution. The two most useful and widely employed /
formulations for F(z) are

1

F(z) = It_ o exp(-/5t%)dt (3.10)
and
F(z) = [1+ exp(-20)]! (3.11)

with x, Y as in (3.3), (3.5), (3.6). These correspond /
with the well-known “probit" and “logit" methods. Both/
can be defended on theoretical grounds, and empirica]lj
both have been found satisfactory for many sets of data
There is little theoretical or practical basis for pre-
ferring one to the other. Indeed, with the definitions/
in (3.10), (3,11), F(z) for a specified value of Y //
will be much the same for both. Maximum likelihood me-/
thods are now appropriate to estimating values for ag,/
ags b in (3.7), (3.8), and estimation of p proceeds as
before by way of (3.9).

4. BIOASSAY DESIGN WITH QUANTITATIVE RESPONSES

In earlier lectures, I have been primarily concer-/
ned with experiments in which all treatment comparisons
are of similar interest. I draw your attention to bio-/
logical assay as an example of more specific concern //
for particular contrats, In an assay for which ¥y is /




measured on a continuous scale (typically a weight of /
an animal or of some organ of an animal), if there has/
been replication over several doses of S, T, standard /
analysis of variance and regression procedures will //
lead to (3.7), (3.8) with a, ag, b being three linear/
contrasts among the observations. Interest is concen-//
trated on the two contrasts (aT - as), b, on which /
the experimenter will therefore be anxious to have high
precision. In most symmetric designs, these two con- /
trasts will be orthogonal, which simplifies the analy-/
sis. Either missing observations or deliberate choice /
in respect of incomplete blocks may destroy orthogona-/
lity; this should not cause serious difficulty, but it/
will reduce precision.

Certainly that the two regressions are linear and /
parallel is rare. In any assay, linearity is at best /
an approximation over a range of doses; parallelism //
may be disturbed by some unintended contamination of S
or T, or by an unsuspecting attempt to estimate a re- /
lative potency for a test preparation that does not - /
obey the simifarnity condition expressed by (3.1), (3.2)
Almost always, tests of vatidity of the linearity and /
parallelism on which estiamtion of p depends will be/
wanted. The need then arises to balance the emphasis on
precision of estimation and that on power for detection
of invalidity.

Evidently a test of parallelism requires that at //
least 2 doses of S and of T are included, and a test of
linearity requires 3 doses. A popular design is the //
(2.2), two doses of each preparation, but this allows /
no test of linearity. The (3.3) design, 3 doses of S /
and of T with equally spaced values of x, is far //
better if validity tests are wanted, but for the same /
total number of subjects it gives less precision for b.
The range of doses for each preparation should be as //
wide as may be risked without great risk or non-linea-/
rity, and any reasonable guess at u (or p) should be
used to choose doses of T at which the expected respon-
ses Qi]l be close to those for the corresponding doses/
of S.

For - /
example, a (3.3) design may need to be arranged in -/
blocks of 4. Tables 4.1, 4.2 show two ways of doing //
this; a full experiment might repeat these sets of 3 //
blocks several times. Although (3,3) is in one sense a/
2x3 factorial design, in the general presentation of /

Interesting confounding schemes can arise.

Lecture VI [ certainly would not have proposed these //
designs. For bioassay, they can be very suitable. Table
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4.1 has partial confounding of the parallelism and 1i-/
nearity tests. Table 4.2 avoids confounding of paralle-
lism by reducing the precision of b. Both have merits/
according to needs. Table 4.3, despite unusual features
avoids all confounding of b a~d of parallelism. Table
4.4., with a multiple of 6 blocks, reduces markedly the
confounding of linearity and has less confounding of //
narallelism and of b than in Tables 4.1, 4.2, respec-
tively. I cannot discuss these designs in detail: they/
are here simply to illustrate my theme that highly spe-
cific needs for estimation and testing call for spe-/
cially constructed designs, and that the statistician /
must be prepared to evaluate the relative merits of al-
ternatives.

In some circumstances, cross-over designs can be /
used with great gains for precision.

Design has even wider connotations if the experimen
ter has some choice of experimental conditions, source/
of subjects, and so on. He should then seek conditions/
such that the variance (02) is small and the slope (8)
large; smaliness of the ratio o/8
high precision in the estiamte M.

is important to //

5. BIOASSAY DESIGN WITH QUANTAL RESPONSES

Some design considerations are the same as for pa-/
rallel line assays in Section 4. A large value of g in
(3.5) is still desirable, and each dose of T should be/
chosen with the aim of having the probability of respon
se close to that for the corresponding dose of S. There
is usually less concern for combinatorial patterns than
with quantitative responses, largely because assays //
require greater numbers of subjects and these tend to
be more homogeneous in their gquantal responsiveness //
than they might be for a quantitative response.

Attention must be given to choice of doses and allo-
cation of subjects to doses. A new difficulty arises ///
from the binomial in the proportion responding: the fa-/
miliar expression "P(1-P)/n" has a maximum at P=0.5 and/
declines to zero when the response rate approaches 0 or/
1. Combined with the flattening of the response curve //
(3.10) or (3.11) at extremes of dose, this has two im-//
portant consequences for an experiment with a fixed to-/
tal number of subjects:

in (3.7), (3.8) is a
maximum if all doses are close to that for ///
F(z) = 0.5;

(i) the precision of ag - ap




(ii) The precision of b is a maximum if subjects
are about equally divided between a dose with
F(z) = 0.05 to 0.10 and another with F(z) = /
= 0.90 to 0.95.

Now M involves the ratio of these two quantities. Al-
gebraic study shows the ideal compromise to depend u-
pon N, the total number of subjects, because the pre-
cision of b becomes less critical as N increases. /
Although the assayist cannot act upon any exact rule/
since he does not know the dose-response relation, /
he can be helped by having stated aims against which/
to interpret any advance information or even guesses.
For example, when N=48 ( a very small number), the //
jdeal probabilities are about 0.16, 0.50, 0.84 for a/
(3,3) assay and 0.16, 0.36, 0.64, 0.84 for a (4,4). /
When N=240, these are altered to 0.28, 0.50, 0.72 and
0.28, 0.42, 0.58, 0.72. All these sets are close to /
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the optimal whether the response function be Normal /:
logistic, (3.10) or (3.11).

Occasionally an experimenter may have to choose /
between alternative bioassay procedures, some using /
quantal and some using quantitative responses. So far/
as precision is concerned, he can compare values of /
1/8  for quantal responses and equation (3.10) with/
values of ¢/ for quantitative responses. Of course,
he will have at best numerical estimates of g, 0 /
from past experiments. He can use 1/8 , o/8 as/
though, to a first order, they are standard deviations
of log potency estimates, per response measured. He /
can then balance the costs of alternative assay proce-
dures in respect of resource and time requirements /
against these approximate deviations and make his --/
choice. The approximation may be very unsatisfactory /
in small experiments.

First 3 blocks for (3,3) parallel line assay in blocks of
4, with parallelism and linearity partially confounded.

$1 Sz
8lock I X
Block II X X
Block III X

T T2 T3
X X

X X
X X

First 3 blocks for (3,3) parallel line assay in blocks of
4, with slope and linearity partially confounded.

S Sz
Block I X
Block II X X
Block III X

Ty T2 T3
X X
X X
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TABLE 4.3

First 3 blocks (3,3) parallel line assay in blocks of
4, with linearity patially confounded.

1 S2 $3 T T2 T3
Block I X X b3 X
Block 1II x X XX
8lock III XX X X
TABLE 4.4

First 6 blocks for (3,3) parallel line assay in blocks of
4, with lesser confounding of slope, parallelism and

linearity.

5 ) $3 LY T2 T3
Block 1 X X XX
Block II XX X X
é]ock 11 X X X X
Block IV X x X X
Block V . X x X X
Biock VI X X X X
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IX. MULTISTAGE SELECTION AND SCREENING

1. INTRODUCTION

This lecture, based upon a lecture I gave to the Ame
rican Statistical Association in August 1983, reviews /
another class of problems in the planning of experiments
Though some of the mathematics goes back to Pearson 45
years earlier, my subject begins with Cochran (1951) ,who
considered the problem of selection from a population in
two stages. He referred especially to selection of good
crop varieties from the many new candidates produced by
plant breeders. He compared the consequences of -- /
achieving the same total intensity of selection by alter
native pairs of selection intensities in the two years ;
for example, an initial N varieties might be reduced to
0.0IN by selecting a proportion 0.2 in the first year
and further selecting a proportion 0.05 from these in
the second year, or by using alternative pairs of inten-
of /
these and related options provides a good example of the

sities such as 0.1, 0.1 or 0.04, 0.25. Discussion

planning of experiments.

2. THE GENERAL PRUBLEM

Suppose that the “value" of an "entity" is represen-

ted by a variable x that cannot be measured directly

(the yielding capacity of a wheat variety, the curative
power of a bacteride), but estimates of x can be formed
from experiments conducted in distinct stages successive

1y in time (e.g. annually). For example, among a large /

number of wheat varieties, that labelled i might have
a yielding capacity X, Observed yields Yipr Yy ceeee
- Yik in k successive stages (typically, a stage is

a year) would have

Yip= Xt e, (r=1,2,...,k) (2.1)

where eip is a random error for which
= 2y s ¢? 2.2
E(eir) 0, E(el ) =¢ (2.2)

with independent errors at different stages. With an /
agricultural crop, the expectation of yield would vary
from year to year on account of weather and other condi-
tions; all selection decisions, however, will be based
on comparisons within a year, ana provided that additivi
ty obtains we need not complicate (2.1) by adding to X;
a parameter for "year" that is independent of i. The se-
lection process begins with N1 varieties or other enti--

ties, so that i = 1,2,...,N1. After each stage, some are
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discarded and he remainder are carried forward to the
next stage, so that at the end of stage r only Nr+1
remain. The aim is to optimize the values of the X; for
the final Nk+1’ by choice of the experimental conditions
and the selection intensity at each stage (Finney, 1964)

Discarded entities will not be measured in subse- /
quent stages, so reducing experimental costs. At stage r
selection can be based only on Yipr Yipeeeor Yip for the
Nr entities still under trial. There will be restriction

on the total resouces available, and ei

will be inver-
sely related to the resources spent on the experiment at
stage

r. The selection at stage r might be based on

one of the three sets of quantities:

(A) Yir alone;

(B) ¥y gy * ¥ip * -
mean;

+ yir)/r, the unweighted /
(€) ¥y =i o] 4y i85 ™ 4wy M (242w
the weighted mean (or a similar mean using estima
ted variances).
The criterion of optimality for the Nk+1 remains to  be
that maximizing the average of the values of X, is more
relevant to practical situations.

For simplicity hereafter, I omit the i subscript /
on x and y ; the context makes clear wheter particu--
lar Xis Yy 0r the sets of N, vaiues of these at stage r
are intended.

3. CROP VARIETIES

Breeders of any species of crop plant produce large
numbers of new genetic combinations (e.g. in the UK, - /
about 500.000 annually for wheat), most of which will be
rapidly discarded because of susceptibility to
and pests, unsatisfactory habit of growth, and so on. /

1000 - 10000 may remain as
tial varieties requiring to be assessed in terms of - /

disease

After three seasons poten -
yield. The inherent yielding capacity of a variety, x ,
can be estimated (relative to others) by annual experi--
ments giving the succession of means Yys Yoo eeen Yy

Suppose that A measures total resources, and a portion /
Ar is used for experiments at stage

k
TA =A
rel ¥

r, where

(3.1)




If all experiments use the same small plots and re- /

sources are measured in terms of area of land, the num

ber of plots per variety at stage r will be proportio-
nal to Ap/Np , the share of resources available for one
variety. Also, ;2 , the variance of the mean yield of a
variety in the experiment at stage r, will be the va-/
riance per plot divided by the number of plots, and ---/
therefore
2

& @ Nr/Ar (3.2)
For various reasons, this relation is not exact, but it
is a reasonable approximation. In a stable situation, a

each /
year (of course N1 is not exactly constant), and is ---/

new cohort of N1 enters the selection programme

passed through the stages independently of previous co-
horts. Thus Ar may be regarded either as the
allotted to stage

share /
r from the total resources. A availa-
ble to one cohort o1 as the share of total annual re--
sources A that is allotted to the cohort then in stage

r.

Cochran (1951) assumed the initial values of x to
be a large sample from a Normal distribution {variance /
az ), and also assumed all error distributions to be /
Normal. His 2-stage selection used }rw; he noted that re
taining the largest values must be optimal. If Nr+1 is
large, the mean of the Nr+l values of §rw selected will
approach the mean of the upper tail of the distribution
for the fraction selected. For a N(0,1) distribution,the
mean of the upper tail of area P is

v(P) = 7/p (3.3)
where is the ordinate bounding the tail, and therefore /
ov (P) is the expected improvement if a fraction P of
the largest x were to be selected without error.Thence
in particular we easily derive the expected gain in b3
from a single stage of selection subject to error:

6 = o2v(P)/ (o%4ed) V2 (3.4)

Following Cochran, I studied (1958) selection of suc
cessive fractions P1 s P2 ,P3 s esns Pk , where
(3.5)

Pr = Nr+1/Nr

and Nk+l is large. In accordance with (3.2), I wrote

t: = YaerA/(NIAr) (3.6)
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y being a dimensionless constant. I believed selection
on y,. to be closer to the practice of plant breeders,and
so at stage r -~/
stages. Calculation could be based on the (k+1)- variate
Normal distribution of x, y1 , y2 » ..

1 ignored information from earlier

.» Yk » With eva-
luation of the mean of x after truncations on each Y.
separately. Because I wished to look at k>2 , I develo-
ped an alternative procedure of obtaining the distribu-
tion of the x values remainig at each stage with the /
aid of cumulant transformations (Finney, 1956; 1961;1962
a), using expansions due to Cornish and Fisher (1937; /
Fisher and Cornish, 1960).

Writing

n= PP P

1Ppeeee Py (3.7)

as the total selection fraction, I demonstrated that /
{when I =1/ 10
nearly 90% of the maximum. possible gain ov(0.01)

Y has a reasonable value 1.0) for
could
be achieved with k = 2; of course the position is
favourable for large vy . Optimal conditions are
flat in the neighbourhood of % = % , Al = A2. This /
suggests the more general rule that, for a total selec--
tion 1 in k

less
very

stages,

b = pl/k

and A_ = A/k for all k
r r

(3.8)
will be close to the maximizing conditions for gain. The
rule is certainly not exact, and becomes a poorer aproxi
mation for Targe k , but its operational ease must be
attractive. Moreover, under most conditions, k = 3 seems
large anough for all practical purposes. If N is very
small, an initial random discarding of a fraction (l-PO)

may increase the eventual gain.

The advent of computers made practicable not only mo
re extensive calculations on these lines but also compa-
rison with finite samples. In 1966, I reported results /
with small samples from a Normal x-distribution. Agree
ment with the previous large sample calculations was /
good, except that for any value of I the expected /
gain is smaller when N is small. For example, with It =
= 0.01, the gain under perfect selection, using (3.3),is
Z.665¢ . Two-stage symmetric selection, equation (3.8),
is always close to the best. With v = 1, the expected
gain for large Ny is2,345¢; this declines to 2.30¢ for
N, = 500, N;= 5 and to 2.13¢ for N; = 100, Nj= 1. Clear-
1y this does not leave much opportunity for greater /
gains by allowing more stages: with N1 = 100, the opti--

mal appears to be 4 stages, for which the gain is 2.290,
two /

a small advantage to set against the delay of




seasons. A small study of variance functions used a geng
ralization of (3.6):

e2 = yo? [N A/(NJA)]" (3.9)
and found both optimal conditions and expected gains re
markable insensitive to changes in w over a range from
0.1 to 2.0. Curnow (1960, 1961) found that replacing the
Normal distribution of x by various beta and )('2 distri
butions altered the magnitude of gains from selection /
but made little difference to the optimal conditions and
(3.8) remained a good aproximation. He confirmed that /
even skew distributions give little advantage to a /
fourth stage.
with
L = 165 N3 = 1 for various N, and A,/A, where v=1 and

Table 3.1 illustrates results from simulations
N

2
1l

et uzA/Al. :; . ezﬂzA/(NlAz] (3.10)
It shows clearly that the symmetric N2=4, A1=A/2 is clo
se to the optimal, though the relation between the selec
ted x and NZ’ A1 is very flat in this region. The gene-
ral appearance of Table 3.1 is typical of what is found
for larger and more interesting numbers. The scope for
improvement is small: even perfect selection in this /
example would yield a gain of only 1.7660 . Selection /

based on ;rw , however, is likely to make the result
still less sensitive to changes in N2 and Al’ since its
benefits will be greatest when L is relatively large.
Table 3.2 confirms this, showing only slight increases /
in the maximum expected gain but an even larger region
that is flat in respect of N2 and Al . Under realistic /
conditions, most of the weight for Y COMes from the
current stage, so that results using Y and Y will be
highly correlated. Table 3.3 shows the variances among
the individual simulations used for Table 3.1, and makes
clear how easily an individual "16- N2-1" selection can
give results far less (or far more) satisfactory than Ta
ble 3.1 indicates. The corresponding variances for selec
tion based on yrw are much the same except that they in-

crease very little as A1 approaches A.

the effect of
by a constant amount. If the inte--

A varieties x year interaction has
iacreasing each C:
raction is appreciable, the t: become more nearly /
equal and for each variety 9rw moves closer to ;r‘ The
upti-
mal conditions involve having the Ar monotonically de- /

expected gain will be reduced by any interaction.

creasing instead of equal.
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More recently, much has been done to systematize the
whole process of running national crop variety trials. /
patterson & Silvey (1980) have described the British ver
sion of this. Current practice owes something to earlier
jdeas on multistage selection, but considerations of ex-
perimental design and of administrative practicability /
raise new issues.

4. EXTERNAL ECONOMY

In 1960, I sought a basis for deciding the optimal /
size of a selection scheme in relation to its benefits /
for the national economy. What should the total resour--
ces be? How many varieties should enter stage 1 as an
annual cohort? How many stages should be used, bearing/
in mind that increase in k delays the exploitation of

gains? The principle is easy, but results depend  upon
parameters that are not easily guessed. Suppose replace-
ment of a variety by a newer one that on average produ--
ces an increased yield of 1.0 per unit area will bring a
monetary benefit of W from the total area under the /
crop. Write U as the cost of increasing A by one unit /
and V as the cost of producing one extra variety for tes
ting. Then, with G still representing the increased ---/
yield per unit area, the net gain,

T=W6-UA-VN (4.1)

is to be maximized.

My calculations for various ratios U:V:W were res--/
tricted to k=1. They showed optimal conditions to give /
values of T relatively insensitive to change inU : V,
but aver the range studied a 5-fold increase in W --- /
brought a 6 to 7-fold increase in T. Curnow (1961) also
studied k=2; his maxima for T were 15-20 percent greater
than with k=1. There are reasons against using large k .
Considerations of confidence in the farming community /
show the dangers both of prematurity and of excessive de
lay in releasing a new variety. As k in increased, orga-
nization becomes more complicated, so that administrati-
ve expenses are increased and interest charges on a lar-
ger investment increase. Most important, for a conti-- /
nuing varietal improvement programme that starts a new
cohort each year, is the fact that increasing k means /
that a longer time elapses before release of a good va-
riety makes its contribution to the term WG in (4.1).

5. ANIMAL SELECTION

When the "yield of an animal is measurable only in




females, as in milk production, the value of a male for
breeding has to be estimated by progeny testing. That is
to say, he must be mated to a number of females and the
yields of his female progeny must be measured under com-
parable conditions. Provided that each sire has mates re
presentative of the same population, the means of the /
Constraints
on the programme are likely to be the total number of/
progeny that can be tested in a generation and the num-

progenies can guide the selection of sires.

ber of sires to be selected as parents of a new genera-
tion. The variable factor is the number of sires to be /
tested each generation and the consequent number of pro-
geny per sire.

Robertson (1957, 1960) looked at this
cal standpoint and obtained an optimization rule that is

from a geneti
essentially the same as for single-stage varietal selec
tion as in Section 3. Multistage selection in animals -/
poses greater problems than in plants, because genera --
tions overlap and are longer.

6. DRUG SCREENING

I have discussed varietal selection at length(though
still with little detail) because it is the application/
[ know best. Logically similar problems arise in the - /
screening of new chemical compounds for possible thera -
peutic activity. Again, large numbers are easily and - /
cheaply produced in amounts adequate for testing, but ve
ry few will ameliorate a specified pathological condi- /
tion. Davies (1958) and Armitage and Scheiderman (1958)
initiated studies of this situation. Davies emphasized /
that a very different distribution of X was appropria-
te. He proposed as an approximation a binomial distribu-
tion between a small proportion, 8§ , of effective and
a large proportion of ineffective compounds, where & /
might be of the order of 0.01 or smaller. The aim of - /
screening is to produce a much higher concentration of
""good" compounds.

Dunnet (1961) discussed various criteria. He envisa-
ged using a unit test (perhaps in an animal or a bacte -
rial culture) to produce a response that has expecta - /
tions Xgs X4 for ineffec tive and effective compounds /
respectively. Individual responses, y, are Normally dis
tributed about X Or Xg with variance . The proba-
bitities PO’ Pl that a set of means of y for a com-
pound will exceed specified values are easily written as
tail areas of a standardized Normal multivariate distri-
bution. Suppose now that a series of "utilities" can be

stated on an agreed scale. Let a be gain per compound /
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accepted, b1 the loss from accepting an inactive compound
b2 the loss from rejecting an active compound, and c the
cost per test unit. Then expected gain per compound tes--
ted is

G = aPla - blPo(l-e) - bz(l-Pl)e - cn (6.1)

where n is the average number of unit tests per compound
Dunnett proposed several forms for bZ‘ One can argue for
by = [blPo(l-a) + ci]/Pye (6.2)
the average cost incurred per active compound accepted ,/
or
by = cii/Pye (6.3)
the average cost of the testing per active compound accep
ted, or
u . n (6.4)
b, (a(1-Py)e + byPy(1 ®) + ch]/Py6
which includes also the missed gain from rejection of ac-
tive compounds. Any proposal for multistage selection /
can be based on maximizing G with b2 defined by one of
(6.2), (6.3), (6.4). Dunnett mentioned other possibili--/
ties, such as maximizing the expected number of actives /
accepted per unit cost of testing, Ple/cﬁ , which is /
the principle that Davies used.

The main difference from Section 3 in Dunnett's pat -
tern of selection is that he advocated a predetermined /
cut-off point at each stage. At stage r of his k -
scheme, n.

stage
responses are measured for each surviving com
pound; ;rw for any compound is now the simple mean res--
ponse from the (n1 + n, + ...+ n. } tests made to date,
and only those compounds for which

continue to the next stage, M. being a fixed quantity .
The formal problem to be solved is then that of choosing
the n_and the ng {(r=1, 2, ...
the criterion adopted.

, k) so as to optimize

7. THE BECHHOFER APPROACH

In a series of interesting papers, Bechhofer and his
colleagues have studied selection with the different aim
of identifying the best single entity. They began ( Bech
hofer, 1954; Bechhofer et af., 1954) with theory relating
populations (equivalent to “entities" in the present paper)
on the basis of either a single sample or a sequence of /




two samples. Later (Bechhofer, 1958; Bechhofer and Blu-
menthal, 1962) they moved towards a classical sequen- /
tial process for identifying the first in rank; they /
with
Nk+1 = 1. Their criterion was the probability that the

did not reject until the final stage, and ended
final selection is the entity with the maximum x from
among the initial Nl‘ In a definitive account of these
and related topics, Bechhofer et af. (1968) have genera
lized the theory to the case of Nk+]:>1

Bechhofer's work has not invoked any distribution /
of yielding capacity {x of earlier Sections), and has
instead used minimax or similar considerations. But - /
Bechhofer's idea is easily extended; why not proceed as
in Sections 2, 3, with the same formulations of distri-
butions and errors, but seek to maximize the probabili-
ty that the final NL,+1 includes the largest x? The ques
tion is closely related to that studied by Dunnett - /
(1960), though he was concerned with choice of sample /
size for a single sample. At first sight, concentration
of attention on the probability of selecting the best
is attractive, but I doubt whether it has special merit
for varietal selection, or even for drug screening. My
reasons are:

(a) If Nk+1/N1 is small, the probability of inclu -
sion is likely to be so small{even at its maxi -/
mum) as to make the chance of actually securing

the largest x negligible; typically for varie--

ties and for drugs Nk+1/N1 is of the order 0.01,

0.001, or less.

o
~

Alternatively, if a reasonable probability of suc
cess were demanded, the required replication - /
would be unacceptably large or the required num--
ber of stages so great as to make the final selec
tion out of date because of steady improvement /
among new input cohorts of Nl’

(c) If N1 is moderately large, little will be lost if
selection ends with only the second or third lar-
gest x, yet the criterion of maximization makes

no allowance for this.

(d) The computations for finding the appropriate re--
jection rules would be intolerably laborious for
any large N1 ; Bechhofer's examples relate to /
N1 < 10

However, maximizing the probability of perfect - /

selection and maximizing the mean of the final Nk+1/
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values of x must require similar decisions at each stage
so that a plan near to optimal for either will almost /
certainly be good for the other. In particular, for any
specified Nr. A
lecting the N

re it seems intuitively obvious that se-
1 largest values of y, (or yrw) must be
optimal for the probability criterion. Indeed, the proba
bility criterion is equivalent to transforming values of
x so as to replace the largest Nk+1 values of x by 1
and the remaining (Nl—Nk+l) by 0. Tables 7.1, 7.2, with
Nk+1=1’ are from the same simulations that produced Ta--
bles 3.1, 3.2.

for this small example, the optimal choice of N2, Al' is

The similarity of pattern confirms that

much the same for maximum probability of "correct” selec
tion as for maximizing expectation.

8. HUMAN SELECTION

If a chemical compound shows little therapeutic bene
fit, it will be discarded; knowledge of how to re-synthe
size it remains, but no notion of "fairness" to the com-
pound impedes its removal from consideration in the - /
current context. If a new wheat line does not achieve /
the selection level at any stage, it likewise will be /
discarded unless special features call for its retention
as breeding material. In some circumstances, notably /
where human beings are selected, the position is very di
fferent.

Seeking an example, I attempted to study the selec--
tion of young people for educational patterns (1962 )
I was concerned solely to recognize that some educatio--
nal selection, or separation into different channels, is
inevitable, and to explore the consequences of doing - /
this in a manner that is not irrevocable and that seeks
to optimize in respect of an explicit aim. The idea of
"discarding” must be abandoned and any statistical solu-
tion must be interpreted flexibly and humanely. No coun-
try can afford to omit from its educational systems - /
eithen measures for the fair treatment of each young per
son according to needs and potential ot a planned policy
for ensuring that the pool of ability is developed for
the benefit of the community.

[ discussed a system of 2-stage selection. Suppose /
that each child has an inherent ability, x and that so-—
me form of test at the end of primary education gives /
and estimate, ¥y that is subject to error. On the basis
of Yl, children are distributed between an academic and
a non-academic secondary pattern in proportions Pl, -/
(1-P1). Some years later, admission to university or /

other form of tertiary education is based upon a  new /




are accepted from
the two streams. Here P} , much smaller tha Py, is inten

estimate, y,, and proportions P,, P%
2 2° "2

ted as a "safety-net" for those who were erroneously pla
ced in the non-academic stream at the first stage. The
fotal proportion entering university is

I = P1P2 + (l-Pl)P'Z' (8.1)

I regarded 1 as fixed by external factors, and then
enquirgd into the choice of Pl’ Pz. PE that would be - /
"best", a word that remained to be defined. The obvious
criterion was maximization of the mean value of x among
those selected for university; this was used, but with

full awareness of its faults.

1 shall not present results of work that in retros--
pect can be seen to have rested on a vastly oversimpli--
fied formulation. One important difference from the ty-

TABLE

Mean Net Gains for Finite Sampling, N1 = 16, N3 =

(expresed as multiples of o
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pes of selection discussed earlier is that any realistic
approach would have to allow for changes in x between /
stages. My purpose was to draw attention to a problem /
and to the possibility of objective study. Even the ~--/
attempt to formulate the problem in statistical terms is
illuminating, for it discloses incertainties about aims
and ignorance of relevant facts such as the size of - /
correlations. My approach may have been inadequate. No
country can afford to neglect the problem of ensuring /
that those young people who are especially able to bene-
fit shall be admitted to the highest levels of education

How this is to be achieved is debatable, but I am /
convinced that the optimization of an appropriate multi-
stage selection process must be a guiding principle. The
major questions are: What "measurements" are to be made?
What criterion is to be optimized?

3.1

1, k = 2,y =1.0, Selection Based on Y,

, and estimated from 5000 simulations per entry)

Values of N2

Al/A 1 2 3 4 5

0.0 0 0.532 0.777 0.921 1.015
0.2 0.721 1.113 1.242 1.31% 1.348
0.4 0.944 1.264 1.342 1.384 1.387
0.6 1.081 1.336 1.376 1.389 1.351
0.8 1.177 1.342 1.336 1.320 1.249
1.0 1.249 1.079 0.952 0.849 0.760

A1l entries for Al/A = 0.0, A1/A =

Entry for AI/A = 0.5, N2

1.081
1.364
1.366
1.332
1.216
0.680

1.0, N,

4 is 1.
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8 10 12 14 16
1.162 1.207 1.232 1.244 1.249
1.345 1.318 1.280 1.223 1.177
1.324 1.277 1.206 1.145 1.081
1.241 1.188 1.084 1.020 0.944
1.090 0.999 0.898 0.794 0.721
0.538 0.408 0.283 0.154 0.

=1, N2 =1, N2 = 16 are exact

388 (10000 simulations)




AI/A

0.0
0.2
0.4
U.6
u.g
1.0

Al/A

0.0
u.2
U.4
0.6
0.8
1.0

mean Net Gains for Finite Sampling, N1 = 16, N3 =1, k= 2,

0.721
0.944
1.081
1.177
1.249

(expresed as multiples of

—_ e e e = O
n
[+l
S

0.777
1.242
1.346
1.386
1.365
1.249

A1l entries for AI/A = 0.0, A1/A = 1.0, N2 =1, N2 = 16 are exact

Entry for AI/A = 0.5, N2 = 4 is 1.402 (10000 simulations}

0.921
1.320
1.395
1.405
1.378
1.249

TABLE 3.2

, and estimated from 5000 simulations per entry)

Values of N

2

5 6
1.015 1.081
1.358 1.372
1.399 1.385
1.389 1.382
1.349 1.344
1.249 1.249

TABLE 3.3

variance of Net Gains for Finite Sampling, N1 = 16, N3 =

1.000
0.883
0.799
0.736
0.687
0.648

(expresed as multiples of oz

0.717
0.647
0.599
0.573
0.586
0.646

0.629
0.583
0.567
0.557
0.582
0.652

A1l Entries for Al/A = 0.0, AI/A = 1.0, Nz =1, NZ = 16 are exact

Entry for AI/A = 0.5, N2 = 4 is 0.547 (10000 simulations)

0.593
0.574
0.552
0.562
0.595
0.661

, and estimated from 5000 simulations per entry)

Values of N2

5

0.579
0.556
0.547
0.562
0.603
0.671

6

0.575
0.549
0.552
0.571
0.610
0.683
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8

.162
. 366
.379
.351
.306
.249

— e b = e e

1, k=2, y= 1.0, Selection Based on Y

0.582
0.584
0.606
0.632
0.672
0.711

e b e =

o o o cCc O C

10

. 207
.340
.327
.31l
.290
.249

10

.597
.597
.620
.665
711
746

12

1.232
1.324
1.303
1.280
1.278
1.249

12

.614
.624
.636
.688
737
.793

o o O o o o
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y = 1.0, Selection Based on yrw

14

.244
. 268
.266
.249
.241
.249

— e e e b

14

0.631
0.639
0.678
0.736
0.797
0.861

16

1.249
1.249
1.249
1.249
1.249
1.249

16

0.648
0.687
v.736
0.799
0.883
1.000




AI/A 1
0.0 0.064
0.2 0.191
0.4 0.253
0.6 0.302
0.8 0.341
1.0 0.375
AI/A 1
0.0 0.064
0.2 0.191
0.4 0.253
0.6 0.302
0.8 0.341
1.0 0.375

TABLE 7.1

Proportion of Simulations in which Final Selection is the Largest x,
N 1= 16, N 3= 1, k=2, v = 1.0, Selection Based on %

(Estimated from 5000 simulations per entry)

Values of N2

2 3 4 5 6 8 10 12
0.124 0.171 0.215 0.242 0.280 0.330 0.351 0.363
0.311 0.361 0.407 0.420 0.427 0.425 0.412 0.382
0.384 0.421 0.450 0.444 0.438 0.424 0.388 0.340
0.421 0.444 0.449 0.420 0.415 0.377 0.346 0.288
0.428 0.419 0.407 0.365 0.350 0.300 0.264 0.223
0.285 0.220 0.199 0.164 0.152 0.122 0.097 0.079

Entry for AI/A = 0.5, N2 = 4 is 0.447 (10000 simulations)
TABLE 7.2
Proportion of Simulations in which Final Selection is the lLargest x,
N, =16, N, =1, k=2, Y= 1.0, Selection based on y
1 3 rw
(Estimated from 5000 simulations per entry)
Values of N2

2 3 4 5 6 8 10 12
0.124 0.171 0.215 0.242 0.280 0.330 0.351 0.363
0.311 0.362 0.410 0.425 0.431 0.438 0.422 0.411
0.384 0.426 0.458 0.452 0.449 0.453 0.411 0.400
0.426 0.451 0.461 0.442 0.446 0.438 0.400 0.389
0.435 0.434 0.442 0.418 0.422 0.406 0.390 0.385
0.378 0.377 0.378 0.374 0.387 0.382 0.378 0.380

Entry for AI/A = 0.5, N, = 4 is 0.458 {10000 simulations)

2
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14

.368
.354
.318
.276
.204
.078

14

. 368
.381
. 387
.379
.377
.364

o o O O O C©

o ©c o o o o

16

.375
.341

.253
.191
.064

16

.372
.386
.383
.382
.386
.387
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X. THE QUESTIONING STATISTICIAN

1. INTRODUCTION

I propose to end my lectures with a discussion of /
the role of statisticians as consultants and collabora-
(Finney 1982a). I shall //
do this by reference to 22 questions that are typical of

tors in experimental design

those I might discuss with a colleague from another ///
scientific discipline who wishad for my help in this /7
experimental programme.

Too often the statistician is regarded as someone//
who appears after data have been collected, performs //
standard calculations, delivers a verdict "Significant”
or "Not Significant”, and departs. This ought to be to-
tally false. A statistician needs to be involved at all
stages of an investigation; unless he can also interact
thoroughly with those who bring other expertise to the/
study, his own skills will not be used to best advanta-
ge. To be specific on details of such interaction is //
not easy, for both the field of application and perso-/
nal experience are relevant. I shall restrict myself to
the planning and design of comparative experiments,that
is to say investigations for comparing two or more 77/
treatments or categories in terms of measurements or //
observations on subjects, and shall illustrate by re-//
ference to biological experiments. I shall have little/
to say on statistical analysis.

2. INTERACTION WITH THE INVESTIGATOR

A biologist may see himself as merely wishing to /
ask a statistician a few critical questions. In prac- /
tice, a more useful first stage may consist of ques-- /
tions §rom the statistician, because he has a broader/
understanding of the relevant to effective deployment /
of his discipline, such questions should be a basis for
discussion rather than for exact answers. Certainly //
there is no way in which a set of answers can automati-

cally generate a plan for statistical activity!

Some of my 22 questions are easy and obvious, -- /

others may require detailed study and complex answers.

Some answers, and also particular circumstances, may //
indicate further topics to be explored at the planning/
stage. Trials involving human subjects commonly intro-/
duce special difficulties in their ethical and organi-/
zational aspects; these may require deeper discussion /
than, for example, Questions 5, 10 and 18 may seem to /
imply. A1l the questions are important to good statis-/

66

tical collaboration. A1l should be clearly in the expe-/
rimental scientist and his statistician-colleague. Many/
excellent book (1952), --/
which contains far more detail. 1 do not suggest that /

are implicit in D. R. Cox's

the set of 22 is complete; a statistician with different
experience might add more questions or group these 22 //
differently.

3. WHAT EXPERIMENT?

QUESTION 1 IS WHAT YOU PLAN TRULY AN EXPERIMENT?

The essential feature is that the experimenter has /
the power to determine which subjects shall receive - /
which treatments.

He can choose which of 50 rabbits are to receive //
each of several doses of an antibiotic; he cannot choose
which of 50 young adults shall smoke 20 cigarettes a day
for 10 years and which shall be non-smokers. He can --//
choose which laboratory rats shall be exposed to a car-/
cinogen and which shall not, but he cannot choose which/
members of a population of rats in the wild shall be ex-
posed to an accidental spillage of toxic wastes. To drow
attention to the logical weaknesses inherent in various /
types of "non-experiment" (retrospective case-control //
studies, unplanned observational data, volunteered infor-
mation) is not to condemn them. Armitage (1981) expresses
the point succinctly: “"When a randomized controlled --//
trial is both practicable and ethical it is, in my view,/
a poor second best to rely on non-randomized comparisons.
In the vast majority of aetiological studies, on the --//
other hand, randomization is not practicable and it would
be foolish to spurn a carefully controlled case-control /
or cohort study": In epidemiology, as in ecology and as-
tronomy (though for different reasons), the interpreta-/
tion of non-experimental data may offer the only hope of
progress. But to analyze such data uncritically as though
they come from a planned experiment invites fallacious //
argument and misleading conclusions. The inferential ///
problems contain many additional difficulties (Anderson /
et al., 1980; Cochran, 1965, 1968).

QUESTION 2 WHY DO THE EXPERIMENT?

Four main classes of reason are worth distinguishing!




(A) Curiosity. What will happen if one substance,/
component, article, method, etc. is used in pla-
ce of another?

(B) Direct interest of comparison in this class of /
subject. Will a new vaccine protect more pigs /
from disease than the existing standard vaccine?

{(C) Intended transfer of conclusions to different //
circumstances.
Anti-tumor drugs may be compared first in labo-/
ratory mammals, even though the sole purpose of/
the research is to improve human health and nu-/
trition.

(D) Subjects are instruments for calibrating treat-/
ments. In biological assay, animals or bacterial
cultures are treated differentiallynot so as to/
measure treatment effects on subjects but to es-
timate how much of one material will produce the
same response as 1 mg or 1 ml of another /Finney
1978).

At this point, an evaluation of previous work in the /
same and closely related fields is needed.

4. THE EXPERIMENTAL UNITS

QUESTION 3 WHAT EXPERIMENTAL UNIT IS TO BE USED?

This is the unit to be differentiated for treat-/
ment. It is often termed the pLot. It might be one pa-
tient, all patients in a ward, a single mouse, a group
of animals or insects that must be treated alike, an /
inoculation site on a live animal, the set of what - /
plants on a 10mx2m area of land, a plate of bacterial/
culture, or even a specified time interval for any of/
these (where a time sequence of different treatments /
can be applied to a biological unit).

Exact definition is essential. Gross errors arise/
if individual patients in a ward, animals in a pen, or
insects in a colony are regarded as "plots" when in /
fact the treatments are necessarily applied across the
larger experimental unit.

The common environment of the ward or the colony /_
15 1ikely to affect its individual members and so to /
destroy the independence of their separate responses //
to treatment.
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QUESTION 4 ARE UNITS “OF EQUAL SIZE“?

If the units consist of different numbers of ani-/
mals or different lengths of time or if they have /
different physical dimensions, the implications for //
statistical analysis need early consideration. Techni-/
cal difficulties may require modifications to a compu-/
ter program or a minor development of statistical theo-
ry.

QUESTION 5 ARE UNITS GROUPED IN ANY WAY, SUCH //
THAT MEMBERS OF THE SAME GROUP WILL BE-
HAVE MORE SIMILARY THAN MEMBERS OF ///

DIFFERENT GROUPS?

Groupings might consist of neighbouring plants, a-/
nimals from one litter, strips of muscle from one ani-/
mal, and so on. This feature is relevant to block - //
structure in design. There may be two potentially use-/
ful groupings, and consequently a need to assess their/
relative merits and make a choice, or to consider Latin
squares.
QUESTION 6 DO SUCH GROUPS CONTAIN EQUAL NUMBERS OF
UNITS?

If blocks of different sizes are to be used, grea-
ter complications may enter into discussion of good de-
sign. These are not insurmountable, but they must be //
recognized.
QUESTION 7 CAN UNITS BE SUBDIVIDED, IN SPACE OR IN
TIME, FOR FURTHER TREATMENT COMPARI- /
SONS ?

For nutrition, the whole animal must be the unit, /
but skin reactions to different materials may be tested
on one animal. Treatment of plants against seed-borne /
diseases must use whole plants or groups of plants as /
plots, but it may be possible to compare fungicides on/
individual leaves. Before using such a spfit plot desing
one must consider the possibility that the treatment //
applied to one sub-unit may influence the measurements /
recorded for other sub-units in the same main unit.

5. THE TREATMENTS

QUESTION 8 HOW ARE THE PROPOSED TREATMENTS STUCTURED?

There are four main types:




(P) No structure - e.g. many different proce-/
dures (perhaps varieties of
wheat) to be compared, no /
pattern or hierarchy among/
them.

(Q) Minimal structure- perhaps some grouping of //

treatments e.g. several new

drugs to be compared with a

standard but only "new v. /

standard" comparisons are /
of interest.

(R) Linear structure - treatments cover a range in

one dimension e.g. “slight”,

“mild", “severe" ox quanti-

tative, as in response cur-

ves studied and estimated /

by using treatments 0,1,2,/

3,4,...(or 2,5,10,25,...).

(S) Factorial structure- combinations of different /

treatments. May take diffe-

rent sets of treatments of/
types P, Q, R, and use all/
combinations; e.g. one //
standard drug and two new /
ones, each tested at doses/
0,1,2,4, that is to say one
factor of type Q and one of
type R.

With human subjects, the structure will usually be /

simple, and the number of treatments will seldom ex-/

ceed four; a subsidiary feature of structure may per-/
mit planned cross-over of treatments during the ex-/
periment. With non-human subjects, and especially in/

agricultural and industrial research, the treatment /

structure may involve far more complex combinatorial/

patterns.

QUESTION 9 HOW RIGID ARE THE REQUIREMENTS FOR  //
TREATMENTS ?

If 17 unstructured or minimally structured treat-/
ments are proposed, would there be serious objection /
to including only 16 or increasing to 18 or 20?  For/
type Q, might there be advantages in including a stan-
dard treatment with double or triple replication?

If the structure is linear, are the number and //
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spacing of levels open to discussion?

If several factors are to be included, is there any
problem in accommodating all combinations?  Thus 3/
drugs, 4 levels of dose, 2 methods of administration //
give 3x4x2 = 24 combinations, possibly too many for the
resources. Experimental design is easier,and in various
ways more satisfactory, if the total number of treat- /
ments (when large) is a square or factorizes easily //
(16=42, 20=4x5), and also for factorial structure if /
all factors have the same number of levels; the statis-
tician might prefer 3x3x3 to 3x4x2, but this is not //
mandatory. Factors all at 2 or all at 3 levels are es-/
pecially suitable for confounding and fractional repli-
cation. The choice of number and spacing of levels can/
have large consequences for the precision of particular
estimates. As in other matters, decision must come from
the experimenter, but the statistician must accept res-
ponsibility for showing the merits and weaknesses of /
various possibilities.

6. RANDOMIZATION
QUESTION 10

ARE THERE ANY CONSTRAINTS ON RANDOM ALLO-
CATION OF TREATMENTS TO UNITS ?

Randomization is one of the most important concepts
that statisticians have introduced into experimentation.
Any departure from completely random allocation of -- /
treatments to units is a matter for careful examination
at the planning stage. Block and confounding constraints
adopted for excellent reasons related to the nature of /
the units and the optimization of precision, demand /7
highly organized restrictions on randomization. A com-/
plex experiment may have independent but interlocking/
phases of randomization, in place of one total drawing/
of lots. These devices in no way destroy the validity /
of inferences as long as it is remembered that the sys-
tem of randomization determines the structure of the /
statistical analysis.

For particular experiments, objections to randomi-/
zation may be raised. An ethical objection is often in/
reality an objection to experimentation rather than /
only to randomization, possibly because leaving any sub
jects or experimental units as untreated controls is /
deemed improper. Other objections may come from a wish/
to avoid putting certain pairs of treatments on adjacent
units, or from an operational convenience if treatments
are in a certain order. Any objection deserves dis-- //

cussion: usually some compromise can maintain statis-/




tical validity within constrains that are inescapable.
Ambiguities in the interpretation of experiments have/
often been caused by insufficient attention to rando-

mization.

7. AIMS

QUESTION 11 WHAT ARE THE OBJECTIVES AND PRIORITIES?

Is the experiment primarily aimed at discovering /
significant differences (e.g. is the effect of a drug/
sensitive to the vehicle in which it is administered?)
or at estimating numerical properties (differences in/
yield potential between varieties of maize, relative /
potency of two drugs, or other particular parameters)?
If there are several objectives, how do they compare /
in importance?
QUESTION 12  WHAT VARIATES ARE TO BE MEASURED ?

Is the experiment to be assessed solely, or prima-
rily, in respect of one variate {quantity of milk, u-/
terine weight, survival time) or are several of compa-
rable interest? If many, could some be omitted as --//
nearly duplicating others (e.g. different techniques /
for measuring what is qualitatively one characteris- /
tic)?

mation from the same plots twice!

There is no point in collecting the same infor-

QUESTION 13 WHAT VARIATES ARE TO BE ANALYZED ?

Is each measured variate to be analyzed separately?
Are combinations (percentages, ratios, indices, "correc
ted values", etc.) to be used? Are all these essen- //
tially distinct? Why analyze both final weight and in-/
crease in weight if initial weights differ only negli-/
gibly? Must every variate be put through a full sta-//
tistical analysis (e.g. analysis of variance) or will /
simnle tabulations suffice for some? A nutritional ex-
periment, for example, can easily have variates rela-//
ting to food intake, growth, perfomance, and various //
aspects of metabolism, in all far more numerous than //
the human or animal subjects under trial! Any experi-/
ment on animals or human subjects that involves conti-/
nous monitoring of certain functions can produce even /
greater numbers of variates. However important an expe-
riment may be, it should not be allowed to generate //
large gquantities of computer output that will never be/
read; not only does this waste effort, but excessive //

output may distract attention from the most valuable //
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findings.

If a multivariate analysis is intended, what is its
purpose? [s the interest in an estimated regression //
function, in establishing a discrimination technique, /
in seeking useful and interpretable canonical variates,

in exploring classifications, or in something different?
8. PRECISION

QUESTION 14 HOW PRECISE OUGHT RESULTS TO BE ?

To say "Very" or "As precise as possible” is unhelp-
full If the design is good, precision can be increased/
only by increasing the size of the experiment, that is /
to say including more units and increasing the costs. //
Therefore, at least for the most important variates, the
minimal requirements for precision may need to be stated
in terms of the standard error of a difference between /
means, a range of error at a stated probability for an /
estimated paramenter, or a power for a significance test.
The experiment must then be planned either to satisfy all
demands simultaneously or to conform to some agreed com-/
promise.
QUESTION 15  WHAT IS KNOWN OF THE VARIABILITY BETWEEN /
UNITS ?

Previous similar experiments, or general notions on
the range of replicate values, may facilitate a guess at
the variance per unit for each major variate that must /
eventually be analyzed. At best, this information can be
accepted only as a rough guide, but it may aid planning.

QUESTION 16 CAN ANY CONCOMITANT BE USEFULLY MEASURED OR
RECORDED ?

Records of initial weights or of some other perfo-/
mance or property of units befone trheatments begin can
sometimes by used effectively in standardizing variates,
improving comparability, and thereby reducing effective/
variance.

Even after 50 years, covariance analysis and //

equivalent techniques for improving precision are /
still inadequately exploited, except perhaps in agri-

cultural field experiments.




9. SERIES OF EXPERIMENTS
QUESTION 17 IS THE EXPERIMENT AN ISOLATED STUDY OR /
PART OF A SERIES ?

If an experiment is ene of a series conducted at/
the same time in different places, coordination of //
design is desirable. Designs at different sites may /
be identical (except for randomization), or with mi-
nor variations on the treatments included, or inter-/
locking so that each represents part of an overall //
grand design. This can be particularly important in /
large-scale clinical studies and in agricultural res/
search intended as the basis of advice for a region.

If an experiment is one of a sequence in time,///

many aspects of the design of each may need to be ///
considered in relation to what can be learned from //

its predecessors.
10. RESOURCES AND CONSTRAINTS
QUESTION 18  WHAT RESOURCES CAN BE USED ?

What/
Jimitations are there on staff of all kinds? Are ma-

How many units can be used? For how long?

terials (e.g. supplies of scarce substances) a res-/
triction? Are there statutory requirements, such as/
“at least 15 mice on each drug"? Are any upper 1i- /
or //
In clinical research, what is the

mits on resources absolute, costly to exceed,
merely convenient?
approximate rate at which new cases will become avai-
lable?

Identification of the true limits on planning is/
not always obvious. A research student once asked my/
advice on an experiment on different varieties of -/
pasture grass.
tion should she use in order to estimate rates of - /

what size of plot and what replica- /

growth by repeated cutting? Only at the end of an //
hour's discussion did reality emerge: the scale of //
the experiment was totally constrained by the dis-- /
tance that she personally could push a small lawn- /
mower in one afternoon!

QUESTION 19  ARE THERE ANY TIME CONSTRAINTS ?

Unless the design needed is obviously very sim-/
ple, a statistician will need time to absorb and di-/
gest the ideas and to produce a good proposal. He //
may make tentative suggestioos during a first dis- /
cussion with the investigator, but he may need seve-/
ral days to explore these further. Indeed, he may ///
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need more time than he woild have taken 30 years ago, /
since today he cam make a computer study of the rela--
tive precision of various possibilities whereas pre--/
viously he might have had to rely on intuitive asse;§/
ment. In an emergency, he might produce a tolerable //
design very quickly; a good design may emerge only af/
ter weeks of intermittent attention to the problem, //
during which time new questions of feasibility and ///
appropriateness can be raised with the investigador.

He may need to examine timing in relation to availa-
bility of staff, equipment, and other resources. He may
ask about weather or other uncontrollable environmental
factors. Yet again, if the statistical analysis of re-/
sults is not going to be standard in type and moderate/
in quantity, he should ask whether the timing for the /
elaboration of analytical procedures and the execution/
of the analyses themselves (statistician's time and ///
computer availability) have been considered in relation
to any urgency in the production of reports.

QUESTION 20 IS THERE ANY PLACE FOR PLANNED SEQUENTIAL
DESIGNS ?

If the time between administration of treatments and
completion of the measurement and assessment of each - /
subject is short relative to the rate at which new units
can be made ready for treating (in clinical trials, -/
effectively the rate of recruitment of new subjects), a/
formal sequential design may need consideration.

11. RECORDING AND ANALYSIS

QUESTION 21 HOW ARE THE RESULTS TO BE RECORDED ?

If recording is by pen-and-paper, from direct obser-
vation and counting or from reading of instruments, are/
adequate precautions taken against mistakes (gross mis-/
counting and misreading, biases due to misuse or mis- /
placement of instruments, etc.)? Will legibility be - /
preserved, especially if records are taken in the open /
air or under difficulties ? Will specially designed //
record forms be helpful and an aid to good organization?
Will the statistician receive the original records, a //
good photocopy, or (very undesirable) an unchecked ma- /
nual or typed copy?

If mechanical or electronic data-capture or data- //
logging equipment is used, is it of tested reliability ?
Will adequate information on its interpretation be avai-

lable. Are there problems of calibration, background //




rates, etc. ?
QUESTION 22 WHAT ARRANGEMENTS ARE NEEDED NOW FOR /
SUBSEQUENT ANALYSIS ?

Possibly the only inmediate step is agreement that/
1 week or 1 year from now results will be passed to the
statistician. Possibly arrangements must be made for //
further intensive discussions about what is to be ana-/
lyzed and how. Possibly there will be recognition that/
statistical algebra and computer programs must be stu-/
died now, in order to be ready for the eventual analy-/
sis. Is a suitable program available, must one be spe-/
cially written, or will an existing program with a ///
little supplementary ad hoc computing suffice for a /
job unlikely to recur? If a major series of experi~ //
ments is being planned, almost certainly attention to /
providing comprehensive software for record storage, //
data management, statistical analysis, and production /
of graphical and tabular summaries will be essential.

12. GENERAL COMMENTS

More important than exact statement of questions is
recognition, by the estatistician and by his colleagues
of his role as a questioner over a wide field. For any
complex problem, personal discussion spread over several
occasions is essential; answers to a printed questio- //
nnaire would be of far less value. I have known inves-//
tigators who would regard some of these questions from a
statistician as impertinent. Even Question 3 can evoke /
the response "That is not your business”! [ have known/
others who would bring ideas for a complicated experi- /
ment to a statistician at 4.00 p.m. and request a design

that can be put into operation at 9.30 a.m. the next day.
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These are not merely irritations to tﬁe statistician or /
material for anecdotes. They are sure ways of obtaining/
advice less than the best and often totally inadequate.

Nothing [ have said implies that the design and ana-/
lysis phases should be kept totally separate; commonly, /
indeed, the eventual analysis and the computer facilities
it needs should be discussed before the design is finally
dccided.  Sometimes results from a well-designed experi-/
ment convey so clear a message that the only analysis ///
needed is production of a few mean values. Sometimes an/
experienced statistician may see that standard technigues
primarily analysis of variance, will extract almost all /
relevant information from an exoeriment with minimal -//
trouble. Sometimes a further extensive phase of questio-/
ning and interacting with the investigator is essential.

A few years ago, 1 heard of an important research /
organization that used its one statistician solely as a
computer with ears and vocal cords. He "analyzed" data/
put before him without regard to their nature, and re-/
turned formal summaries of his findings without concern
for their comprehensibility. He was never involved in /
planning and design. Where the blame lay is irrelevant:
the correct role for a statistician is very different.
He should be a collaborator, not a servant, participa-/
ting extensively and deeply in many aspects of a re-. /
search programme. In some investigations, he should be
a full partner, contributing his expertise and sharing /
the total responsibility at all stages from tentative //
plans to publication of reports.




XI.

No good general book on experimental design has been
published in recent years. There is great need for a /
text that takes account of developments in the past 25
years; designs for special purposes, sequential designs,
integration of various ideas (cross-overs, nearest /
neighbours, etc.) with the mainstream of design planning
for series of experiments in space and time and combina-
tion of their results. Above all, there is need for a /
book that recognizes the changes brought by computers in
ease of generation of designs and especially the greater
flexibilityacceptable in combinatorial structure now /
that labour of computation is no longer a constraint. In
connexion with my series of lectures I can recommend /
only five as broad enough in outlook: Cox (1959) as a
superb account of topics such as [ have mentioned /
briefly in Lecture X, Cochran & Cox (1957) and Finney
(1960) for general presentations of design and analysis
without full theory, Kempthorne (1952) and John (1971) /
for more detailed theoretical discussion.

The 1list of references that follows is not intended
as a comprehensive bibliography. 1 have included only
the books mentioned above and a short selection of publi
cations that are relevant to topics in the lectures but
are not necessarily original or primary sources of infor
mation.

ANDERSON, S., AUQUIER, A., HAUCK, W.W., OAKES, D., /
VANDEALE, V., and WEISBERG, H.I. (1980) Statistical
Methods §on Comparative Studies, New York: John /
Wiley & Sons.
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DISENO DE EXPERIMENTOS

1. DISERO Y ESTIMACION: ALEATORIZACION COMPLETA

1. INTRODUCCION

Mi diccionario dice que un exverimento es una accién
emprendida con el fin de descubriralgo que es desconoci
do. Nhserven la implicacién de que el experimentador //
tiene cierto libre albedrfo: determina las condiciones/
particulares de la experimentacién. Por ejemplo, un an-
tiguo quimico deseaba saber si para que un material ar-
diera se necesitaba aire. Su experimento consistié en /
colocar una vela encendida en el interior de un reci- /
piente de manera que no pudiera entrar mds aire: por su
puesto la vela se apagd pronto. E1 experimentador apli-
c6 el thatamiento del recipiente cerrado al sujeto, una
vela encendida. Tenfa el poder de impedir o utilizar o
no el tratamiento, y definirlo exactamente en términos
de tamafo, forma, materiales, etc.

Trataré s6lo de experimentos comparativos,es decir,
experimentos en que dos o mis tratamientos deben compa-
rarse entre si, respecto a alguna propiedad mensurable.
Obviamente, uno desea realizar una comparacién impar- /
cial, asegurando que todas las demds condiciones rela-/
cionadas con el resultado sean 1o mds semejante posible
y que los sujetos difieran solamente en Tos tratamien-/
tos que recihen. Simbélicamente (con una notacién que /
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substituiré mds adelante por algo mds exacto), la medicidn
y para dos sujetos, pudiera representarse por

% = M+ G+F+ H ’ (1.1)

¥, ® M+G+F + T2 (1.2)

para dos tratamientos,aplicado cada uno de ellos a un suje
to.En este caso,M es un nivel medio general, G representa
desviaciones de éste asociadas con factores inherentes en
el sujeto -en un contexto biolégico,posiblemente la modifi
cacién de M apropiada para un animal de una raza,constitu-
ci6én genética,sexo,edad,etc.,particulares- y F representa/
desviaciones asociadas con factores ambientales tales como
la dieta y la temperatura.Siempre que G y F sean idénticos
para los dos sujetos, la diferencia yl-y2 es igual a la di

ferencia Tl-T? entre los efectos de los tratamientos.

Aquf estdn implicitas dos suposiciones: (i) pueden en-
contrarse sujetos para los que G y F son idénticos y (ii)/
sujetos idénticos en G, F, y tratamiento dardn exdcta- //
mente la misma medicién y. Estas suposiciones se acercan/

hastante a la verdad en el caso de las velas que arden en




recipientes cerrados. Son sequramente falsas en la expe-
rimentacién biolégica, en la que y puede ser una medi- /
cién del peso o del azicar en la sangre o del tiempo de
supervivencia de un animal que recibe un tratamiento con
una droga determinada. Las ecuaciones necesitan modifi-/

carse Como:
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Aquf G, F se relacionan ahora con los efectos inehrentes
y ambientales promedio de una clase o poblacién de suje-
tos muy similares pero inevitablemente no idénticos; ///
€15 €2
jetos elegidos 1o mds homogéneo posibles, combinada con/

, son medidas de la variacién individual entre su

los efectos debidos a la variacién en las caracteristi-/
cas inherentes v ambientales relativas a la media.

1 1 .
(1.3) Esencialmente, se presenta la misma situacién en otras /
muchas ramas de la ciencia y de la tecnologia: por ejem
yz = M+ G#F+T2+:2 (14) plo,
Sujetos Tratamientos Mediciones
Pacientes de una enfermedad Medicinas Tiempo de recuperacién

Nifos

Chapas metdlicas

Automéviles
Parcelas de trigo

Ya no podemos afirmar que

Th-Te=9 Y

y en general no sabemos nada acerca de los valores de //

€,, €3 - Se nos abren dos caminos:

(i) Aleatorizacidn

Recurriendo al azar para determinar que sujeto reci-
be cada tratamiento, nos aseguramos que el error al uti-

lizar y . - Y es probablemen
1 2
te igual a €,- €, é €,° & -

petido muchas veces, Como promedio seria correcto el va-

como el valor de T 1 T
Si el experimento fuera re

Tor obtenido para T - T >

(ii) Replicacién

E1 principio de aleatorizacién es una de las mayo-/
res contribuciones de la Estadistica a la investigacién.
Sin embarqo, por si mismo no elimina todas las dificulta
des. La replicacidn proporciona la respuesta. Asignando/
varios sujetos a cada tratamiento, se reducen las incer-
tidumbres debidas a los "errores experimentales" . Un /
tratamiento se evalda ahora en términos de la media de
y para los sujetos, y es aplicable el conocido resultado
de las varianzas:

Var(media de r) = Var (ohservacién individual)/r  (1.5)

Métodos de ensefianza
Métodos de proteccidn

Tipos de gasolina
fFertilizantes
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Rendimiento en los test

Cantidad de herrumbre después
de un afo

Consumo a los 100 km.

Cosecha

E1 disefio de experimentos, estd relacionado con la ex
plotacién de estas ideas de modo que se utilicen los suje
tos y materiales disponibles con el méximo aprovechamien-
to, reduciendo al minimo la varianza de las medias de los
tratamientos. En particular, las relaciones entre los su-
jetos pueden utilizarse para reducir la contribucién del
error debido a las diferencias en los caracteres inheren-
tes y ambientales de 10s sujetos.

2. PARAMETROS

Formulemos ahora estas ideas de manera un poco mas //
exacta. Supongamos que se mide y para el sujeto nimero/
k de los de un grupo con clasificacién genética y ambien
tal i
escribir las ecuaciones anteriores como:

que reciba el tratamiento j. Podemos volver a /

Yig " v Byt Ty toeigy (2.1)
Aquf, u es una media general, ﬁi abarca los G y F pre-/
vios y es la desviacién de u correspondiente al estado //
promedio de la clase inherente y ambiental particular uti
lizada, ¥ Ti es la desviacién adicional asociada con el /
tratamiento j (denominado corrientemente efecto del trata
miento j); € como antes es el error residual debido a Ta
variabilidad dentro de la categorfa i y a la variabili

dad de los sujetos individuales, y se indica con ijk /




simplemente para mostrar su correspondencia con la ohser
vacién ¥ijk:

Nos referimos a Tj (para j =1, 2, ..., t sihay t
tratamientos en discusién -es necesario que t no sea /
2) como parametros.{Esta es una palabra utilizada en ex-
ceso hoy dfa tanto en la literatura médica como por los/
periodistas. Para el estadistico ha tenido desde hace //
tiempo un significado precisoc como un valor numérico que
caracteriza una poblacién o una formulacién tedérica u- /
sualmente desconocida pero que necesita estimarse a par-
tir de Tos datos). Ademds, de estos pardmetros del trata
miento, los Bi son también pardmetros relacionados con /
el ambiente u otras caracteristicas de antecedentes de /
los sujetos; con frecuencia los denominaremos pardmetros
de bloque. También w es un pardmetro para la media gene-
ral.

Supondremos ademds, que la esperanza de €Zes 1a mis-

ma para todas las observaciones.

E(e?) = o2 (2.2)

siendo el pardmetro de g2 la varianza (¢ la desviacién /

tipica) por observacién. Esta suposicién de varianza ///

constante es usualmente razonable a menos que y sea ex

cepcionalmente variable, en particular mds variable para

algunos tratamientos que para otros. Una suposicién de /

que € tiene una distribucidn normal o Gaussiana no es ne
cesaria para la exposicién principal de disefio.

3. ESTIMACION

En la situacién siempre prevista en la seccién 1 no
interviene el problema de la estimacién. Alli se sobren-
tend7a que todos los sujetos tienen el mismo 3;es decir,
Bx , por 1o que para los sujetos en tratamientos diferen
tes tenemos

LIETIR + +

S I ML TS TY
- + +

’12k 7] Bl 12 + tle’
LTI 2 + +

y13k ¥ Bl T3 £13k-

etc.

(3.1)

Evidentemente si formamos a su vez medias({promedios) pa-
ra los sujetos en cada tratamiento, las diferencias en-/
tre estas medias estimardn las diferencias entre los pa-
rémetros 7 correspondientes, ya que el (u + 51) es comin
a todos.

Veremos que podemos necesitar implicar a mds de un /
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B en un experimento. Hay dos razones -reducir la varian-
za del error o ampliar la base de la inferencia. Si Bl re
presenta una clase muy amplia, por ejemplo, todas las eda
des del sujeto, € se verd muy influenciado por la va-/
riacién de sujeto a sujeto asociada con la edad. Restrin-
giendo los sujetos de un recorrido de edad estrecho, se /
reduce la variabilidad de(IZy, por consiguiente, el valor
de (3. Reteniendo sujetos de varios grupos de edades dis-
tintos dentro de un experimento, esperamos proporcionar a
los resultados una validez mds amplia. Por ejemplo, en se
res humanos podriamos tener sujetos de edades: 20-30, ///
30-40. 40-60, 60-80, cada uno con su propio (3. Por otra /
parte,en una comparacién de fertilizantes para el trigo,/
podriamos desear una inferencia basada en varios tiempos/
diferentes de siembra.

Consideremos un ejemplo muy sencillo. Supongamos que
deseamos estudiar tres tratamientos. Podriamos utilizar /

cuatro grupos de edades 1 sujeto en cada uno de ellos:

Tratamiento (7)) Edad (8)
1 2 3 4
1 (x) x X X
2 X X X X
3 X X x  (x)

En esta situacion simétrica, podemos todavia estimar las
diferencias entre los pardmetros del tratamiento justo an
tes, promediando entre todos los grupos de edad. Los tra-
tamientos estdn equilibrados con numeros iguales para ca-
da grupo de edad. Lo mismo ocurrird si tenemos, por ejem-
plo, 9 sujetos en el grupo de edad 2 con 3 en cada trata-
miento. Pero supongamos ahora que se han utilizado sola-/
mente 10 sujetos -los dos entre ( )} no existen. Entonces
el promediado simple de los restantes sujetos puede indu-
cir a error. E1 promedio para el tratamiento 2, es para /
todos los grupos de edad, pero el promedio para el trata-
miento 1 omite los sujetos mds jévenes. Por consiquiente,
si y es una medida que tiende a aumentar con la edad //
con independencia del tratamiento (por ejemplo, la pre- /
sidn sanguinea), esta comparacidén simple serd sesgada.

Sin embargo, tenemos valores de y para 10 sujetes y
podemos describir la formulacién pardmetrica para cada //
uno de ellos:

SO T T VL L
. (3.2)

Yagp " vt Byt Ty toegys J

etc.

{(k = 1 en todos Tos casos, ya que solamente tenemos un su
jeto en cada "casillero" de la tabla). ;C6émo elegimos va-




lores nimericos para los parémetros con el fin de optimi
zar 1la armonfa entre las observaciones y los parédme- //
tros?. Un principio estadfstico ampliamente aceptado es
el de los Minimos Cuadrados: estimar los pardmetros de /
tal manera que se haga la suma de los cuadrados de los /
restos 10 mds pequefia posible (Finney 1980, Yates,1933).
Sim, bl’ tj son estimaciones de los u, Bi' 'j' corres-/
pondientes, los restos se definen como

€11 "Y1 """ b2 Y (3.3)
331 " Y331 """ P3 -t o
etc.
E] método de estimacién es minimizar la suma de e? me-/

diante la eleccién adecuada de valores nimericos para //
los pardmetros. No puedo entrar en detalles sobre el ///
principio general, salvo decir aue tiene muchas propieda
des teéricas deseables: es insesgado, proporciona estima
ciones con varianza minima, y , si los errores tienen //
una distribucién normal, es eauivalente al método total-
mente eficiente de mdxima verosimilitud.

Por consiguiente escribirfamos

= - R . 2
S (.y211 v Bz 'Il) + (y311 -y - B - 11)2

3
2
+ (_y411 -y - 84 - Tl) L SN
e ¥ (yggy - By - 13)2 (3.3)

y sequidamente minizariamos s mediante la eleccidn ///

apropiada de los valores de Tos pardmetros.

En la sencilla situacién simétrica que mencioné pri-
mero, para cada sujeto del grupo de edad 1 (o mids en ge-
neral para un nimero constante de sujetos) en cada trata
miento, podemos probar facilmente que la minimizacién de
S1 se reduce a un simple promediado. Si m, bi’ tj re-/
presentan ahora estosestimadores mfnimos cuadrdticos, m
es la media de todas las observaciones, (m + bi) es la /
(m + tj) es la
media general en el tratamiento j. En ausencia de sime-/

media de todas las del grupo de edad i,

tria y equilibrio, los valores de m, bi’ tj son menos //
obvios y deben obtenerse resolviendo conjuntos de ecua-/
ciones lineales. Pero ahora tenemos un procedimiento nu-
mérico manejable y sensible para todos los casos, aunque
haya dejado algunos detalles sin explicar. Estas ideas /
se repetirdn en conferencias posteriores. E1 método de /
minimos cuadrados sustenta todo el andlisis de la varian
za y la metodologfa de regresién miltiple, pero no insis
tiremos mucho en ello.

4. ALEATORIZACION COMPLETA
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Aquf y en la Conferencia II, presumo que estdn algo /
familiarizados con el andlisis de la varianza. Expondré /
la estructura general de este andlisis y el concepto esen
cial de ortogonalidad en la Confernecia III.

E1.disefo experimental més sencillo, es aquel en que/
los sujetos disponibles se asignan completamente al azar
entre los t tratamientos, decidiendo simplemente el ex-
perimentador cuantos corresponderdn a cadatratamiento.Por
ejemplo, con t = 5 y 43 sujetos disponibles el experimen-
tador podrfa elegir al azar lotes con el fin de asignar /
11 sujetos al primer tratamiento, 6 al segundo, 14 al ter
cero, 4 y 8 al cuarto y quinto. Explicaré 1a eleccién de

los nimeros en la Conferencia III.

La Tabla 4.1 muestra porcentajes de fosfato de calcio
en pollos en'cuatro preparados distintos de vitamina D. /
Las conclusiones parecen evidentes, pero los datos pueden
explicar los cdlculos. Podemos calcular una suma de los /
cuadrados de las desviaciones dentro de cada tratamiento:

T 528698 L v 62 23523
= 18.54  (6g1) '

T,: 4356 (51)

T,: 5392 (7q1)

T4 : 29.71 (6q1)

(deliberadamente no estoy comprobando tode el cdlculo ///
aritmético comprobarlo y corregirle aqui y en cualquier /
lugar, es un buen ejercicio para el estudiante). Combinan
do (agrupando) toda la evidencia sobre la varianza se ob-
tiene la estimacidn:

2
S

"

(18.54 + 43,56 + 53.92 + 29.71)/(6 + 5 + 7 + 6)
6.072 (24q1)

La varianza de la media de un tratamiento es Sz/rl. sien-
do r, el nimero de sujetos. En la Tabla 4.2 se muestran /
las medias y los errores tipicos. Podemos formar los erro
res tipicos de las diferencias, estimar cualquier Ti - T
y poner 1imites de probabilidad en los mismos, hacer déci
mas de significacién y asf sucesivamente a voluntad. Co-/
mento solamente que la diferencia entre Tl’ T2 y T3, T4 /
es incuestionable, mientras que las diferencias dentro de
estos pares son apreciablemente menores que el doble de/
sus errores tipicos.

Consideremos un método alternativo de cdlculo que ///
aquf es poco ventajoso, pero importante para el futuro.

(i) Formar la suma total de los cuadrados de las desvia-/




ciones para un total de 2R ohservaciones:

5.02 + 6,92 + ..... + 13,12 - (33.3 + 42,9 + 106.0 +

+ 106.5)2/28 = 3635.69 - 2976.70
= 658.99 .

(ii) Formar la suma de los cuadrados "entre tratamien- /
tos" (explicacién en la Conferencia III):

33.3% , 42.9% | 106.0° , 106.52 _ 288.72
7 -3 : 7 "~ T%®

= 513.27 .

Insertar estos valores en la tabla 4.3, el andlisis
de la varianza, y obtener la suma de cuadrados del error
por substraccién. Se ve fdcilmente que esto da exactamen-
te el mismo cuadrado medio del error s  que antes, excep-

tuando el redondeo aritmético.
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La comparacién de los cuadrados medios de los trata-/
mientos y del error por medio de una d6cima de razén de /
varianzas, proporciona una décima de significacién de 1la
hipétesis nula "todos los 7 son iguales". Estrictamen-/
te, la décima es vdlida solamente si las € estdn distri-/
buidas normalmente, pero en la prdctica esta restriccidn/
no importa mucho. Ciertamente aquf, donde SF = 2R.2 con 3
y 24 grados de libertad no hay duda acerca de la signifi-
cacidn. Sin embargo, este tipo de d6écima rara vez es im-/
portante. En la mayorfa de los experimentos el valor pri-
mario del andlisis de la varianza es como procedimiento /
para obtener el cuadrado medio del error, siendo esta la
varianza bdsica para utilizarla en determinadas décimas /
de significacién al expresar la precisifn de las estima-/
ciones de los pardmetros y las comparaciones entre los /
pardmetros, y al calcular los 1imites del error con las /
probabilidades establecidas.

TABLA 4.1

Comparacién de cuatro preparados de vitamina D

(Porcentaje de fosfato de calcio en pollos)

Tratamientos T1

Porcentajes 5.0
6.9
4.6
5.7
1.8
3.2
6.1

Totales

33.3
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T2 . T3 T4
5.6 8.7 17.0
9.0 11.9 16.3
7.8 13.3 17.2
2.2 15.9 14.8
7.8 16.9 16.7
10.7 15.8 11.4
11.9 13.1

11.6
42.9 106.0 106.5




TABLA 4.2

Resumen de las medias para la Tabla 1.1

Tratamiento T T2 T3 T4

Media 4.8 7.2 13.2 15.2

SE (Error tipico) +0.93 +1.01 +0.87 +0.93
TABLA 4.3

Andlisis de la Varianza para la Tabla 1.1

Ajuste a Ta media 2976.70

Variacidén gl Suma de los cuadrados
Tratamientos 3 513.27
Error 24 145.72
Total 27 658.99
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Media cuadrdtica

171.09

6.072
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I1. BLOQUES ALEATORIZADOS; ACCIDENTES Y PLANES DE SALVAMENTO

1. ALEATORIZACION COMPLETA: EL PLAN EXPERIMENTAL

En la Seccién I 4, se utilizahan nimeros totalmente/
arbitrarios de sujetos por tratamiento. ;Cémo deberfan /
elegirse estos nimeros?. Pueden contemplarse muchas si-
tuaciones diferentes. Aquf solamente se expondrdn dos.

Supongamos que el experimentador estd preparado para
utilizar N sujetos en total, r_i para el tratamiento Ti

para i = 1, 2, ... t. Por consiguiente

rl*r2¢.....+rt-n (1.1)

Si todos los tratamientns son iqualmente interesan-/
tes se podrfa desear minimizar la varianza promedio de /
las diferencias entre pares de tratamiento. Esto supone/
que el valor promedio de

L + 1 para todos los pares 1,
rgor

b
dehe minimizarse sujeto a la ecuacién (1.1). Un peauefo/
célculo diferencial muestra aue el minimo estd dado por

r. = N/t

i (1.2)

para todo i. Es decir, repetir todos los tratamientos //
igualmente. Por supuesto, N, puede no ser un mdltiplo //
exacto de t, en cuyo caso los tratamientos deben tener /
un sujeto adicional.

Supongamos a continuacién que Tl es un tratamiento /
estandar con el cual deben compararse cada uno de los //
tratamientos restantes, pero que no presta atencidén a las
diferencias entre los otros. Lo importante es minimizar/
el valor promedio de

1, . )
;I ;; para todo i excepto para i = 1,
todavfa suieto a la ecuacién (1.1). La respuesta es me-/
nos evidente aunque una prueba bastante sencilla conduce
a

. B
1 F T+/(t-1)

e (A1), (1.3)

2°"3

En otras palabras T1 deberfa repetirse en mayor medi-
da que los otros por un factor v (t-1) . Esto rara vez /

81

puede lograrse exactamente en nimeros enteros, pero una /
pequefia desviacién supone poca diferencia.

Por consiguiente, en el experimento de la vitamina D
de la Tabla I 4, vemos que si todas las comparaciones hu-
hieran sido de igual interés, el disefio 6ptimo habria te-
nido 7 pollos en cada tratamiento. Por otra parte, si sé-
1o hubiera habido interés en comparar T1 con cada uno de/
Tos otros tres - 10, ry=ry=r, = 6 habrfa sido un /
plan mejor (10/6 se aproxima a v/ 3) Desde luego, no hay /
razén para esperar que s° dependa de i Las alternati-/
vas aquf no son muy diferentes. La primera da una varian-
za de 0,29 s~ para cada diferencia entre dos de los T.,la

. 2 J
segunda de una varianza de 0,27 s~ para T] con cualquiera
de las otras, 0,33 52 3 Y Td'/
En l1a prédctica, cualquier ventaja partiendo dé la igual-/
dad de los r, es pequefia a menos que haya diez o mds tra-
tamientos.

para cualauier par de T?, T

2. BLOQUES ALEATORIZADOS

En l1a Tahla 2.1, se muestran los pesos uterinos de ra
tas ovariectomizadas que hahfan recibido uno de cuatro /
preparados de oestrona. Los animales disponibles eran cua
tro hembras de cada una de siete camadas. La aleatoriza-/
cién se hizo dentro de las camadas: los cuatro tratamien-
tos fueron asignados aleatoriamente cada uno a una rata /
de la camada I, cada uno a una de la camada II y asf suce
sivamente. Este es un disefio de bfoque aleatorizado.la //
idoneidad de la ecuacién I (2.1) serfa evidente con la /
excepcién que siempre es k = 1 y puede omitirse: para la
rata en el tratamiento j de la camada i,

yig =¥ + Bt T + €4 - (2.1)
;Por qué hacer esto? jNadie podrfa obtener 28 ratas de //
una sola camada!. Un disefio completamente aleatorizado se
rfa legftimo, pero entonces los pardmetrosdel bloque (ca-
mada) estarfan combinados con los componentes de error y
por consiguiente aumentarfan el error efectivo.

E1 andlisis de la varianza (tabla 2.2) comienza ahora
a mostrar sus méritos. La suma total de cuadrados:

0.542 + 0.492 + ... + 1.08% - (24.19)%/28 = 2.5757

se encuentra sin dificultad. (Otra vez les dejo que com--
prueben mi cdlculo aritmético). La suma de cuadrados para




los tratamientos requieren el mismo cdlculo que en la Sec
cién 1 1, ahora algo mds senciilo porque todos se repiten

por igual:
(4.682 + 7.39% + 5.19% + 6.97%)/7 - 24.192/28 = 0.7671

De manera semejante, puede formarse una suma de cuadra-//
dos para los hlogues:

(3.59%2 + 2.57% + ..... + 4.75%)/4 < 24,19%/28 = 0.9232

A causa del equilibrio del disefio -cada tratamiento apare
ce el mismo nimero de veces en cada bloque- estas dos su-
mas de cuadrados son independientes (en el sentido que se
va a explicar en la Conferencia III, el ortogonal): Ambas
pueden restarse del total para dejar el error con(27-6-3)
gl., s2 = 0.04919.

La décima de significacién para los tratamientos

F = 5.2 con 3 v 18 grados de libertad

deja poca duda acerca de que las diferencias sean rea-//
les. E1 restmen de la tabla 2.3, es mucho mis ordenado //
aue el de 1a Tabla I4.2 debido a la equi-repeticidn, y la
media de cada tratamiento tiene la varianza s“/7=(0.083)"
Una diferencia entre las medias de dos tratamientos, tie-
ne como varianza 252/7; la multiplicacién del error tipi-
co correspondiente por 2.10 da N.249 como incertidumbre /
asociada a cualquier diferencia estimada con una probabi-
lidad de 0.95 para t

la diferencia en los pardmetros entre T, y T, se estima /

con 18 g.1. Por ejemplo, 12 - 11,
como 0.393 y con una probahilidad de 0.95 comprobamos que
el verdadero valor estd entre 0.144 y 0.642.

La simetria de este disefo es tal aue las estimacio-/
nes de los pardmetros obtenidas mediante minimos cuadra-/
dos son idénticas a las resultantes del evidente y no cri
tico promediado de los datos. Por consiquiente, para los
que (2.1) es todavia apropiado, Tos cdlculos son (seqin /

se indicaba ya en la seccién I 3)

m = media de todos los ht valores de y (2.2}
hi= (media de todos los t valores del hloque i)-m (2.3)
t1= (media de todos los b valores del tratamien-

to i) -m (2.4)

Para alquno de los disefios que explico, mds adelante, en/
especial en la Conferencia V el cdlculo es menos eviden-/
te.

3. DOS COMENTARIOS SOBRE LA VARIANZA DEL ERROR
E]1 andlisis de la varianza permite encontrar con mu-/

cha facilidad 52, aunque e) procedimiento pueda parecer /
indirecto. Es posible efectuar un cdlculo directo, que //
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conduzca a la misma respuesta exactamente,
mucho mds laborioso.

pero esto es

Supongamos que se hubiera utilizado un disefio comple
tamente aleatorizado con estas 28 ratas. La variabilidad
entre camadas hahria tenido entonces error experimental.
Podemos estimar que el cuadrado medio del error habrfa /
sido:

(0.9232 + 0.04919 x 21)/27 = 0.07245

aproximadamente un 50% mayor que 52. Esto indica que ha-
brfan sido necesarios aproximadamente 1,5 veces mis ra-/
tas, es deciry 11 por preparado para obtener la misma //
precisién . (Los mismos errores tipicos de las medias).
4. COMPARACIONES EMPAREJADAS

Una forma de bloques aleatorizados utilizada corrien
temente para experimentos de estructura simple es la de
bloques de 2, conocida como comparaciones emparejadas.Un
tratamiento puede ser comparado con el estado de con- /
trol, sin tratar, sobre pares de sujetos tales como dos/
conejos de la misma camada, terneras gemelas idénticas,/
lados izquierdo y derecho del cuerpo humano, pares de pa
cientes de igual edad, sexo, y gravedad de enfermedad, y
asf sucesivamente. La aleatorizacidén es exactamente como
para otros bloques aleatorizados.

Por supuesto, los resultados pueden analizarse exac
tamente como en la seccién 2. Una alternativa consiste /
en formar la diferencia entre los pares de los valores /
y, "control-tratado" para cada bloque, y a continuacién/
efectuar un célculo directo de la varianza de las dife-/
rencias. Esto se describe en muchos libros de texto ele-
mentales.

Los dos métodos de cdlculo, conducen a resultados //
idénticos, como puede verificarse algebraicamente con fa
cilidad.

5. COMENTARIO GENERAL
Los disefios completamente aleatorizados de blogues /

aleatorizados son indudablemente los dos disefios experi-
mentales mis importantes y mis ampliamente utilizados.Am

bos son de aplicabilidad muy amplia en casi todo campo /

de experimentacién cuantitativa. Ademds, la mayorfa de /
1os otros disefios, de algunos de los cuales voy a hablar
en conferencias posteriores, son generalizaciones y ex-/
tensiones de estas ideas.




6. ANALISIS DE COVARIANZA

Supongamos que correspondiendo a cada medicién de y,
hay también una medicién de una variable aleatoria x que
se sabe que no ha sido afectada por el tratamiento. La /
situacién mds satisfactoria es aquella en que se midié /
antes de la asignacién aleatorizada de los tratamientos.
Por ejemplo, x puede ser el peso de un animal antes del
comienzo de un experimento,y puede ser tal vez el peso /

total 10 semanas después del tratamiento o el peso de un

6rgano determinado en este Gltimo momento. Alternativa-/ -

mente, x puede ser la cosecha de fruta de un drbol en
1984 después de haber comenzado un experimento para com-
parar los métodos de poda. Aunque dicha x es a menudo/
una medicién de la misma clase que la y subsiguiente, no
es necesario que lo sea -por ejemplo, pueda ser la altu-
ra del &rbol frutal; la Unica caracterfstica esencial es
que la conexién causal entre x y el tratamiento puede/
ser excluida logicamente.

Si puede elegirse y medirse una x adecuada, éste /

puede contener informacién sobre dicho componente de /

la variabilidad en y que no se debe al tratamiento. //
Una aproximaci6n razonable, consiste en modificar la ///

ecuacién (2.1) como

Yige " ut 85 1yt 8lxyg - X) *+eyg (6.1)
(y modificaciones semejantes para otros disefos experi-/
‘memades), siendo @ un pardmetro adicional (estimado por
minimos cuadrados, por supuesto) y X la media de todos
las Xijk'
es la de corregir la estimacién de los pardmetros del //

La consecuencia de incluir la estimacién de 8

tratamiento T para valores que representan una iguala-

cifén con respecto a «x.

Este procedimiento se conoce como andfisis de cova-/
nianza. E1 célculo se hace mis fdcilmente afiadiendo a la
tabla del andlisis de varianza dos columnas mds: Una es/
el andlisis de x2, exactamente como el de y2, y la se-/
gunda es un andlisis de la misma forma efectuado sobre /
los productos xy en lugar x2 6 yz. Por consiguien-
te, 8 se estima como

0 = Suma de productos del error / Suma de cuadrados del

error para Xx. (6.2)
Cada t, para y puede ajustarse ahora mediante:
tj (ajustado) = tj (para y) - @ tj (para x) (6.3)

Hay una relacién evidente y estrecha con la regre-//
sifn 1ineal, que permite que las varianzas de las compa-
raciones de las ti ajustadas se formen considerando los

contrastes lineales apropiades. (Conferencia III). Co-/
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chran & Cox (1.957) dan ejemplos excelentes. No diré mds.
E1 método es valioso, e insuficientemente aprovechado pa-
ra usarlo con variables aleatorias x que se registran /
facilmente como parte del proceso experimental. Por analo
gfa con la regresién lineal miltiple, pueden utilizarse /
dos o mds variables aleatorias x distintas en un andli-
sis de covarianza mdltiple. He introducido el tema princi
palmente para poder utililizar el andlisis de covarianza/

en las Secciones 7, 8.
7. OBSERVACIONES PERDIDAS

Incluso el experimentador mds cuidadoso pierde ocasig
nalmente el valor de y en una parcela. Tal vez, animales/
que pacen invaden una parcela de trigo, un rayo cae sobre
un drbol, 0 una rata de un experimento muere accidental-/
mente -incidentes todos que no deberfian relacionarse con
los tratamientos aplicados-. ;Que es lo que hay que ha-//
cer?, E1 método de minimos cuadrados es la forma mds apro
piada de manejar la falta de equilibrio. Si el experimen-
to estd completamente aleatorizado, no hay problema: sim-
plemente se considera que el tratamiento implicado tiene/
una parcela menos y se realizan los cdlculos normales. Pa
ra bloques aleatorizados y otros disefios, el método de mi
nimos cuadrados puede utilizarse de tres maneras, todas /
equivalentes.

(i) Escribir 2z para el “valor perdido" de y. Hacer un
andlisis de varianza en funcién de z, y hallar la /
suma de cuadrados del error en la forma

Az2 + B2+ C (A>0) (7.1)

Este se minimizard mediante:

z s -B/2A (7.2)

Introducir este valor numérico de z en el lugar de
la y perdida, reducir en 1 el nimero de grados de/
libertad para el error, y el andlisis de varianza //
completo dard el valor apropiado de 52 como una esti

macion insesgadaoz.

Para un disefio de bloques aleatorizados con b blo-//
ques de tratamientos esto conduce a

~ bB+tT -6

Z® T(b-1)(t-1) (7.3)

siendo B el total de todas las demds y en el bloque/
del que falta una,T el total de todas las demds y pa
ra el tratamiento del que falta uno, y G el total de
los (bt - 1) valores registrados de y. Pueden encon-
trarse férmulas andlogas para otros disefios.




(ii) Imaginar un valor para 2z, Y hallar las estimacio-
nes de todos los pardmetros m, b., ti' Luego deter

minar
m+ bi + tJ

para la "parcela perdida”, colocdndole en lugar del
primitivo valor de z y repetir el ciclo hasta que
7 permanezca constante. Esto asequra aue el residuo
{seccién 13) para la parcela perdida es cero. Se ob
tendrd exactamente la misma 2z que en {I)

Aunque (i) y (ii) conducen a Ta estimacién insesga-
da de 0‘21as varianzas y errores tfpicos de las di
ferencias en el t. reauieren mds cuidados. E1 valor
de z es, como en 17.3\, una funcién lineal de todas
las demds y, y en consecuencia las diferencias de /
las varianzas de 1os tratamientos son mayores que /
si los datos estuvieran completos. Un ajuste rudi-/
mentario, aunaue poco riguroso, consiste simplemen-
te en considerar que el tratamiento afectado tiene/
una replicacidén menos.

(iii)Introducir un valor arhitrario en la posicién perdV
da. Una eleccién adecuada es la media general de //
todos los valores de y de las otras parcelas, pe-
ro el resultado consiquiente es el mismo sea cual /

fuese el elegido. Después definir x como una "va-
riable aleatoria ficticia" aue toma el valor (N-1)/
para la parcela perdida, y-1 para todos las demds,
siendo N el nimero total de parcelas. Hacer un and-
1isis de covarianza de y sobre x. Alajustart. se
habrd tenido en cuenta el valor perdido, y al épli
car los métodos tipicos de andlisis de covarianza /
-regresi6n lineal, se prestard la debida atencién a

las varianzas y errores tipicos.

Los métodos (i), (ii), (iii) pueden generalizarse para /
abordar los casos en que falten con dos o mis observa-//
ciones. Debemos tener definidos por separado 2y Zpaeens
perder tantos grados de libertad de s  como parcelas per
didas e introducir una variable aleatoria ficticia dife-

rente xl. x?.... para cada parcela perdida.

Aunque el método (i) es conveniente para los casos senci
110s en que se conoce la férmula tal como (7.3), el méto
to (iii) tiene la ventaja de su generalidad. Se aplica a
cualquier disefo, por muy completo que sea, y se mane ja
ficilmente con la ayuda un fichero general de computa- /
cién que incluya andlisis de covarianza.

Obsérvese la necesidad 16gica de que la pérdida de
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un valor serd casualmente independiente del tratamiento/
aplicado. Si la cosecha de un drbol frutal se pierde por
que su tratamiento ha estimulado la maduracidén temprana/
de la fruta y su consiguiente destruccién por los pdja-/
ros, 0 si una rata muere porque su dieta experimental //
era deficiente en algin componente vital, la utilizacién
de cualquiera de los métodos de esta Seccién debe produ-
cir resultados sesgados. Si una dieta particular bajo en
sayo introduce un riesgo grave de que las ratas mueran /
antes de que alcancen los seis meses de edad, ;que signi
ficado tendria estimar el peso esperado a los doce meses
para las ratas con dicha dieta?. En tales circunstan- /
cias, el método estadfstico solo no puede servir de ayu-
da: debe de ser examinado de nuevo el concepto y propési
to completo del experimento.

8. ALGUNOS OTROS ACCIDENTES

El método de los mfnimos cuadrados y el andlisis de/
covarianza son ayudas poderosas para salvar aguellos ex
perimentos que han ido mal. Por ejemplo, si se conoce /7
que la cosecha de dos parcelas de terreno se ha mezclado
en la recoleccién, de manera que solamente se conoce el/
total de los dos valores de y, cualquiera de los métodos
(i), (ii), (iii) puede adaptarse a este problema.

Federer & Schlottfeldt (1954) y Outhwaite & Ruther-
ford {1955) estudiaron las alturas de las plantas regis-
tradas de siete tratamientos en ocho bloques aleatoriza-
dos. Los blogues estaban adosados y las siete parcelas /
de cada blogue estaban en una séla 1fnea. Por desgracia,
la planificacién de los bloques no tuvo en cuenta adecua
damente las tendencias de la fertilidad del terreno,y la
precisién del experimento se redujo por un gradiante: /7
conveniente de la fertilidad de parcela a parcela dentro
de Tos bloques. Los autores recuperaron informacién por/
covarianza sobre una varianza aleatoria ficticia. El si-
guiente paso consistié en definir X} como una variable/
aleatoria que aumentaba linealmente de una parcela a 17/
otra dentro de cada bloque, es decir, x1 =0, 1, 2,...,6
y utilizar ésta como covariable aletoria. Extendiendo el
andlisis para incluir una serie de seis variables aleato
rias ficticias elegidas cuidadosamente, puede eliminarse
toda tendencia (lineal o no), de parcela a parcela a 1o/
largo de los bloaues. E1 experimento habria sido mis pre
ciso, si los blogues se hubieran basado sobre la tenden-
cia real (o se hubiera utilizado un disefio de cuadrado /
latino de doble entrada, pero si la tendencia no se cono
cfa con anticipacién, el andlisis de covarianza propor-/
ciona una operacién de salvamento efectiva.




Hace algunos afios se me pidié que ayudara en un ex-
perimento sobre variedades de cereales, formado por 36/

parcelas adosadas largas y estrechas (Finney 1.962). To

das las esquinas de las parcelas estaban 